In medical world, the minimally invasive freezing therapy or cryosurgery is an efficacious treatment for complete and controlled eradication of tumor cells. Many difficulties are encountered in cryosurgery process such as inappropriate freezing may not completely destroy the target tumor tissue and excessive freezing may harm the surrounding healthy tissues due to release of high amount of cold from the freezing probe. In present study, the target tumor tissue is loaded with nanoparticles in order to improve the freezing capacity of probe and to regulate the orientation and size of ice-ball formed during cryosurgery. In this process, phase transformation occurs in the undesired tumor tissues. For simulation of phase transition in bio heat transfer equation, the fixed-domain, heat capacity method is used to take into account the latent heat of phase change. In this study, a meshfree numerical technique known as element free Galerkin method (EFGM) is employed to simulate the phase transition and temperature field for a biological tissue subjected to nanocryosurgery. The latest nanofluid model which includes the effects of particles size, concentration, and the interfacial layer at the particle/liquid interface is utilized and their impact on freezing process is investigated in detail.

References

1.
Chua
,
K. J.
,
Chou
,
S. K.
, and
Ho
,
J. C.
,
2007
, “
An Analytical Study on the Thermal Effects of Cryosurgery on Selective Cell Destruction
,”
J. Biomech.
,
40
(
1
), pp.
100
116
.10.1016/j.jbiomech.2005.11.005
2.
Li
,
E.
,
Liu
,
G. R.
,
Tan
,
V.
, and
He
,
Z. C.
,
2010
, “
An Efficient Algorithm for Phase Change Problem in Tumor Treatment Using α-FEM
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
1954
1967
.10.1016/j.ijthermalsci.2010.06.003
3.
Liu
,
J.
, and
Deng
,
Z. S.
,
2009
, “
Nano-Cryosurgery: Advances and Challenges
,”
J. Nanosci. Nanotechnol.
,
9
(
8
), pp.
1
22
.10.1166/jnn.2009.J01a
4.
Yan
,
J. F.
, and
Liu
,
J.
,
2008
, “
Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues
,”
Nanomed. Nanotechnol. Biol. Med.
,
4
(
1
), pp.
79
87
.10.1016/j.nano.2007.11.002
5.
Dreher
,
K. L.
,
2004
, “
Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles
,”
Toxicol. Sci.
,
77
(
1
), pp.
3
5
.10.1093/toxsci/kfh041
6.
Nel
,
A.
,
Xia
,
T.
,
Mädler
,
L.
, and
Li
,
N.
,
2006
, “
Toxic Potential of Materials at the Nanolevel
,”
Science
,
311
(
5761
), pp.
622
627
.10.1126/science.1114397
7.
Salata
,
O. V.
,
2004
, “
Applications of Nanoparticles in Biology and Medicine
,”
J. Nanobiotechnol.
,
2
(
3
), pp.
1
6
.10.1186/1477-3155-2-3
8.
Zhang
,
L.
,
Gu
,
F. X.
,
Chan
,
J. M.
,
Wang
,
A. Z.
,
Langer
,
R. S.
, and
Farokhzad
,
O. C.
,
2008
, “
Nanoparticles in Medicine: Therapeutic Applications and Developments
,”
Transl. Med.: Clin. Pharmacol. Ther.
,
83
(
5
), pp.
761
769
.10.1038/sj.clpt.6100400
9.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
,
Oxford
, UK.
10.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
11.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
.10.1007/s11051-005-9018-9
12.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
13.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
14.
Xue
,
Q.
, and
Xu
,
W. M.
,
2005
, “
A Model of Thermal Conductivity of Nanofluids With Interfacial Shells
,”
Mater. Chem. Phys.
,
90
(
2–3
), pp.
298
301
.10.1016/j.matchemphys.2004.05.029
15.
Zhang
,
Y. T.
, and
Liu
,
J.
,
2002
, “
Numerical Study in Three-Region Thawing Problem During Cryosurgical Re-Warming
,”
Med. Eng. Phys.
,
24
(
4
), pp.
265
277
.10.1016/S1350-4533(02)00020-6
16.
Gupta
,
S. C.
,
2000
, “
A Moving Grid Numerical Scheme for Multidimensional Solidification With Transition Temperature Range
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
2
), pp.
525
544
.10.1016/S0045-7825(99)00305-9
17.
Voller
,
V. R.
,
Swaminathan
,
C. R.
, and
Thomas
,
B. G.
,
1992
, “
Fixed Grid Techniques for Phase Change Problems: A Review
,”
Int. J. Numer. Methods Eng.
,
30
(
4
), pp.
875
898
.10.1002/nme.1620300419
18.
Bhattacharya
,
M.
,
Basak
,
T.
, and
Ayappa
,
K. G.
,
2002
, “
A Fixed-Grid Finite Element Based Enthalpy Formulation for Generalized Phase Change Problems: Role of Superficial Mushy Region
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4881
4898
.10.1016/S0017-9310(02)00178-3
19.
Fachinotti
,
V. D.
,
Cardona
,
A.
, and
Huespe
,
A. E.
,
1999
, “
A Fast Convergent and Accurate Temperature Model for Phase Change Heat Conduction
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
1863
1884
.
20.
Bhargava
,
R.
, and
Singh
,
S.
,
2013
, “
Element Free Galerkin Simulation of Mixed Convection MHD Flow Over a Vertical Power-Law Stretching Sheet
,”
Int. J. Appl. Math. Mech.
,
9
(
8
), pp.
54
74
.
21.
Singh
,
S.
, and
Bhargava
,
R.
,
2014
, “
Numerical Study of Natural Convection Within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating
,”
Sci. World J.
,
2014
, p.
842401
.10.1155/2014/842401
22.
Wissler
,
E. H.
,
1998
, “
Pennes' 1948 Paper Revisited
,”
J. Appl. Physiol.
,
85
(
1
), pp.
35
41
.
23.
Hashimoto
,
T.
,
Fujimura
,
M.
, and
Kawai
,
H.
,
1980
, “
Domain Boundary Structure of Styrene–Isoprene Block Copolymer Films Cast From Solutions 5. Molecular-Weight Dependence of Spherical Micro-Domains
,”
Macromolecules
,
13
(
6
), pp.
1660
1669
.10.1021/ma60078a055
24.
Liu
,
G. R.
,
2003
,
Meshfree Methods—Moving Beyond the Finite Element Method
,
CRC Press
,
London, UK
.
25.
Singh
,
A.
,
Singh
,
I. V.
, and
Prakash
,
R.
,
2007
, “
Numerical Analysis of Fluid Squeezed Between Two Parallel Plates by Meshless Method
,”
Comput. Fluids
,
36
(
9
), pp.
1460
1480
.10.1016/j.compfluid.2006.12.005
You do not currently have access to this content.