A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to be fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler performance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified.

References

1.
Moran
,
M. E.
,
Wesolek
,
D. M.
,
Berhane
,
B. T.
, and
Rebello
,
K. J.
,
2004
, “
Microsystem Cooler Development
,”
2nd International Energy Conversion Engineering Conference (IECEC)
, Aug. 16–19,
Providence, RI
.
2.
Sharp
,
J.
,
Bierschenk
,
J.
, and
Lyon
,
H. B.
,
2006
, “
Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management
,”
Proc. IEEE
,
94
(
8
), pp.
1602
1612
.10.1109/JPROC.2006.879795
3.
Burger
,
J. F.
,
2001
, “
Cryogenic Microcooling
,” Ph.D. thesis, University of Twente, The Netherlands.
4.
Stetson
,
N. B.
,
1991
, “
Miniature Integral Stirling Cryocooler
,” U.S. Patent No. 5,056,317.
5.
Solomon
,
R.
,
1994
, “
Integrated Refrigerated Computer Module
,” U.S. Patent No. 5,349,823.
7.
Bowman
,
L.
,
Berchowitz
,
D. M.
, and
Uriell
,
I.
,
1995
, “
Microminiature Stirling Cycle Cryocoolers and Engines
,” U.S. Patent No. 5,457,956.
8.
Moran
,
M. E.
,
Stelter
,
S.
, and
Stelter
,
M.
,
2004
, “
Micro-Scale Regenerative Heat Exchanger
”,
AIAA Canada-Europe-USA-Asia (CANEUS) 2004 Conference on Micro-Nano-Technologies for Aerospace Applications
, Nov. 1–5,
Monterey, CA
.
9.
Moran
,
M. E.
,
2002
, “
Micro-Scalable Thermal Control Device
,” U.S. Patent No. 6,385,973 B1.
10.
Radebaugh
,
R.
,
2005
, “
Microscale Heat Transfer at Low Temperatures
,”
Microscale Heat Transfer—Fundamentals and Applications
,
Springer
,
Berlin
, pp.
93
124
.
11.
Walker
,
G.
,
1976
,
Stirling Cycle Machines
,
Clarendon
,
Oxford, UK
.
12.
Guo
,
D.
,
McGaughey
,
A. J. H.
,
Gao
,
J.
,
Fedder
,
G. K.
,
Lee
,
M.
, and
Yao
,
S. C.
,
2012
, “
Numerical Modeling of a Micro-Scale Stirling Cooler
,”
ASME 2012 Summer Heat Transfer Conference
, July 8–12,
Puerto Rico
.
13.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
14.
Snyman
,
H.
,
Harms
,
T. M.
, and
Strauss
,
J. M.
,
2008
, “
Design Analysis Methods for Stirling Engines
,”
J. Energy South. Afr.
,
19
(
3
), pp.
4
19
. Available at: http://www.erc.uct.ac.za/jesa/volume19/19-3jesa-snymanetal.pdf
15.
Zukauskas
,
A. A.
,
1972
, “
Heat Transfer From Tubes in Cross Flow
,”
Advances in Heat Transfer
,
Academic
,
New York
, pp.
93
160
.
16.
Forchheimer
,
P. H.
,
1901
, “
Wasserbewegun Durch Boden
,”
Z. Ver. Dtsch. Ing.
,
45
, pp.
1782
1788
.
17.
Blake
,
F. C.
,
1922
, “
The Resistance of Packing to Fluid Flow
,”
AICHE J.
,
14
, pp.
415
422
.
18.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
19.
Lee
,
S.
, and
Yang
,
J.
,
1997
, “
Modeling of Darcy-Forchheimer Drag for Fluid Flow Across a Bank of Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3149
3155
.10.1016/S0017-9310(96)00347-X
You do not currently have access to this content.