Abstract

This communication studies the flow and heat transfer characteristics over a continuously moving surface in the presence of a free stream velocity. The Jeffrey fluid is treated as a rheological model. The series expressions of velocity and temperature fields are constructed by applying the homotopy analysis method (HAM). The influence of emerging parameters such as local Deborah number (β), the ratio of relaxation and retardation times (λ2), the Prandtl number (Pr), and the Eckert number (Ec) on the velocity and temperature profiles are presented in the form of graphical and tabulated results for different values of λ. It is found that the boundary layer thickness is an increasing function of local Deborah number (β). However, the temperature and thermal boundary layer thickness decreases with the increasing values of local Deborah number (β).

References

1.
Fetecau
,
C.
,
Fetecau
,
C.
, and
Zierep
,
J.
, 2002, “
Decay of a Potential Vortex and Propagation of a Heat Wave in a Second Grade Fluid
,”
Int. J. Non-Linear Mech.
,
37
, pp.
1051
1056
.
2.
Tan
,
W. C.
, and
Masuoka
,
T.
, 2005, “
Stokes Problem for a Second Grade Fluid in a Porous Half Space With Heated Boundary
,”
Int. J. Non-Linear Mech.
,
40
, pp.
515
522
.
3.
Fetecau
,
C.
, and
Fetecau
,
C.
, 2006, “
Starting Solutions for the Motion of a Second Grade Fluid Due to Longitudinal and Torsional Oscillations of a Circular Cylinder
,”
Int. J. Eng. Sci.
,
44
, pp.
788
796
.
4.
Fetecau
,
C.
, and
Fetecau
,
C.
, 2003, “
Decay of a Potential Vortex in a Maxwell Fluid
,”
Int. J. Non-Linear Mech.
,
38
, pp.
985
990
.
5.
Hayat
,
T.
,
Qasim
,
M.
, and
Abbas
,
Z.
, 2010, “
Radiation and Mass Transfer Effects on the Magnetohydrodynamic Unsteady Flow Induced by a Stretching Sheet
,”
Z. Naturforsch.
,
65
, pp.
231
239
.
6.
Hayat
,
T.
,
Abbas
,
Z.
, and
Sajid
,
M.
, 2009, “
MHD Stagnation Point-Flow of an Upper Convected Maxwell Fluid Over a Stretching Surface
,”
Chaos, Solitons Fractals
,
39
, pp.
840
848
.
7.
Hayat
,
T.
,
Abbas
,
Z.
,
Pop
,
I.
, and
Asghar
,
S.
, 2010, “
Effects of Radiation and Magnetic Field on the Mixed Convection Stagnation-Point Flow Over a Vertical Stretching Sheet in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
53
, pp.
466
474
.
8.
Cortell
,
R.
, 2005, “
Flow and Heat Transfer of a Fluid Through a Porous Medium Over a Stretching Surface With Internal heat Generation/Absorption and Suction/Blowing
,”
Fluid Dyn. Res.
,
37
, pp.
231
245
.
9.
Ishak
,
A.
,
Nazar
,
R.
,
Amin
,
N.
,
Filip
,
D.
, and
Pop
,
I.
, 2007, “
Mixed Convection of the Stagnation-Point Flow Towards a Stretching Vertical Permeable Sheet
,”
Malays. J. Math. Sci.
,
2
, pp.
217
226
.
10.
Hayat
,
T.
, and
Qasim
,
M.
, 2010, “
Influence of Thermal Radiation and Joul Heating on MHD Flow of a Maxwell Fluid in the Presence of Thermophoresis
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4780
4788
.
11.
Sakiadis
,
B. C.
, 1961, “
Boundary Layer Behavior on Continuous Solid Surfaces. II: The Boundary Layer on a Continuous Flat Surface
,”
AIChE J.
,
7
, pp.
221
225
.
12.
Banks
,
W. H. H.
, 1983, “
Similarity Solutions of the Boundary Layer Equations for Stretching Wall
,”
J. Stat. Mech.: Theory Exp.
,
2
, pp.
375
392
.
13.
Afzal
,
N.
, and
Varshney
,
I. S.
, 1980, “
The Cooling of a Low Heat Resistance Stretching Sheet Moving Through a Fluid
,”
Waerme- Stoffuebertrag.
,
14
, pp.
289
293
.
14.
Afzal
,
N.
, 1993, “
Heat Transfer From a Stretching Surface
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1128
1131
.
15.
Magyari
,
E.
, and
Keller
,
B.
, 2000, “
Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable Stretching Walls
,”
Eur. J. Mech B/Fluids
,
19
, pp.
109
122
.
16.
Hayat
,
T.
,
Abbas
,
Z.
, and
Pop
,
I.
, 2010, “
Momentum and Heat Transfer Over a Continuously Moving Surface With a Parallel Free Stream in a Viscoelastic Fluid
,”
Numer. Methods Partial Differ. Equ.
,
26
, pp.
305
319
.
17.
Zaman
,
H.
,
Hayat
,
T.
, and
Ayub
,
M.
, 2009, “
Series Solution for Heat Transfer From a Continuous Surface in a Parallel Free Stream of Viscoelastic Fluid
,”
Numer. Methods Partial Differ. Equ.
18.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2008, “
Hydromagnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet
,”
Heat Mass Transfer
,
44
, pp.
921
927
.
19.
Barletta
,
A.
,
Rossi di Schio
,
E.
, and
Selmi
,
L.
, 2011, “
Thermal Nonequilibrium and Viscous Dissipation in the Thermal Entrance Region of a Darcy Flow With Streamwise Periodic Boundary Conditions
,”
J. Heat Transfer
,
133
, p.
072602
.
20.
Sun
,
Z.
, and
Jaluria
,
Y.
, 2011, “
Conjugate Thermal Transport in Gas Flow in Long Rectangular Microchannel Zhanyu Sun and Yogesh Jaluria
,”
J. Heat Transfer
,
133
, p.
021008
.
21.
Jaluria
,
Y.
, and
Yang
,
J.
, 2011, “
A Review of Microscale Transport in the Thermal Processing of New and Emerging Advanced Materials
,”
J. Heat Transfer
,
133
, p.
060906
.
22.
Coelho
,
P. M.
, and
Faria
,
J. C.
, 2011, “
On the Generalized Brinkman Number Definition and Its Importance for Bingham Fluids
,”
J. Heat Transfer
,
133
, p.
054505
.
23.
Turkyilmazoglu
,
M.
, 2011, “
Heat and Mass Transfer on the MHD Fluid Flow Due to a Porous Rotating Disk With Hall Current and Variable Properties
,”
J. Heat Transfer
,
133
, p.
021701
.
24.
Hayat
,
T.
,
Ahmad
,
N.
, and
Ali
,
N.
, 2008, “
Effects of an Endoscope and Magnetic Field on the Peristalsis Involving Jeffrey Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1581
1591
.
25.
Kothandapani
,
M.
, and
Srinivas
,
S.
, 2008, “
Peristaltic Transport of a Jeffrey Fluid Under the Effect of Magnetic Field in an Asymmetric Channel
,”
Int. J. Nonlinear Mech.
,
43
, pp.
915
924
.
26.
Hayat
,
T.
, and
Ali
,
N.
, 2008, “
Peristaltic Motion of a Jeffrey Fluid Under the Effect of a Magnetic Field in a Tube
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1343
1352
.
27.
Nadeem
,
S.
, and
Akbar
,
N. S.
, 2009, “
Peristaltic Flow of a Jeffrey Fluid With Variable Viscosity in an Asymmetric Channel
,”
Z. Naturforsch.
,
64
, pp.
713
722
.
28.
Liao
,
S. J.
, 2009, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
983
997
.
29.
Cheng
,
J.
,
Liao
,
S. J.
,
Mohapatra
,
R. N.
, and
Vajravelu
,
K.
, 2009, “
Series Solutions of Stagnation Slip Flow and Heat Transfer by the Homotopy Analysis Method
,”
Sci. China Ser. G
,
52
, pp.
893
899
.
30.
Liao
,
S. J.
, 2010, “
On the Relationship Between the Homotopy Analysis Method and Euler Transform
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1421
1431
.
31.
Khan
,
H.
,
Mohapatra
,
R. N.
,
Vajravelu
,
K.
,
and
Liao
,
S. J.
, 2009, “
The Explicit Series Solution of SIR and SIS Epidemic Models
,”
Appl. Math. Comput.
,
215
, pp.
653
669
.
32.
Abbasbandy
,
S.
, and
Shivanian
,
E.
, 2010, “
Prediction of Multiplicity of Solutions of Nonlinear Boundary Value Problems: Novel Application of Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
3830
3846
.
33.
Abbasbandy
,
S.
, 2010, “
Homotopy Analysis Method for the Kawahara Equation
,”
Nonlinear Anal.: Real World Appl.
,
11
, pp.
307
312
.
34.
Abbasbandy
,
S.
, and
Shirzadi
,
A.
, 2011, “
A New Application of the Homotopy Analysis Method: Solving the Sturm–Liouville Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
112
126
.
35.
Hashim
,
I.
,
Abdulaziz
,
O.
, and
Momani
,
S.
, 2009, “
Homotopy Analysis Method for Fractional IVPs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
674
684
.
36.
Chowdhury
,
M. S. H.
,
Hashim
,
I.
, and
Abdulaziz
,
O.
, 2009, “
Comparison of Homotopy Analysis Method and Homotopy-Perturbation Method for Purely Nonlinear Fin-Type Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
371
378
.
37.
Bataineh
,
A. S.
,
Noorani
M. S. M.
, and
Hashim
,
I.
, 2009, “
Homotopy Analysis Method for Singular IVPs of Emden–Fowler Type
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
1121
1131
.
38.
Hayat
,
T.
,
Awais
M.
, and
Sajid
,
M.
, 2010, “
Similar Solutions of Stretching Flow With Mass Transfer
,”
Int. J. Numer. Methods Fluids
,
64
, pp.
908
921
.
39.
Hayat
,
T.
,
Qasim
,
M.
, and
Abbas
,
Z.
, 2010, “
Homotopy Solution for Unsteady Three-Dimensional MHD Flow and Mass Transfer in a Porous Space
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
, pp.
2375
2387
.
40.
Hayat
,
T.
,
Naz
,
R.
, and
Abbasbandy
,
S.
, 2010, “
On Flow of a Fourth Grade Fluid With Heat Transfer
,”
Int. J. Numer. Methods Fluids
.
41.
Hayat
,
T.
,
Mustafa
,
M.
, and
Mesloub
,
S.
, 2010, “
Mixed Convection Boundary Layer Flow Over a Stretching Surface Filled With a Maxwell Fluid in Presence of Soret and Dufour Effects
,”
Z. Naturforsch.
,
65
, pp.
401
410
.
42.
Cortell
,
R.
, 2010, “
Radiation Effects for the Blasius and Sakiadis Flows With a Convective Surface Boundary Conditions
,”
Appl. Math. Comput.
,
206
, pp.
832
840
.
43.
Sadeghy
,
K.
,
Najafi
,
A.
, and
Saffaripour
,
M.
, 2005, “
Sakiadis Flow of an Upper-Convected Maxwell Fluid
,”
Int. J. Nonlinear Mech.
,
40
, pp.
1220
1228
.
44.
Alam
,
M. S.
, and
Rahman
,
M. M.
, 2006, “
Dufour and Soret Effects on Mixed Convection Flow Past a Vertical Porous Flat Plate with Variable Suction
,”
Nonlinear Anal.: Model. Control
,
11
, pp.
3
12
.
45.
Sahoo
,
B.
, and
Do
,
Y.
, 2010, “
Effects of Slip on Sheet-Driven Flow and Heat Transfer of a Third Grade Fluid Past a Stretching Sheet
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
1064
1071
.
46.
Sahoo
,
B.
, 2009, “
Hiemenz Flow and Heat Transfer of a Third Grade Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
811
826
.
47.
Sahoo
,
B.
, 2009, “
Flow and Heat Transfer of a Non-Newtonian Fluid Past a Stretching Sheet With Partial Slip
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
811
826
.
48.
Sajid
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
, 2007, “
Non-Similar Analytic Solution for MHD Flow and Heat Transfer in a Third-Order Fluid Over a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1723
1736
.
49.
Hayat
,
T.
,
Mustafa
,
M.
, and
Asghar
,
S.
, 2010, “
Unsteady Flow With Heat and Mass Transfer of a Third Grade Fluid Over a Stretching Surface in the Presence of Chemical Reaction
,”
Nonlinear Anal.: Real World Appl.
,
11
, pp.
3186
3197
.
50.
Mukhopadhyay
,
S.
, 2009, “
Effect of Thermal Radiation on Unsteady Mixed Convection Flow and Heat Transfer Over a Porous Stretching Surface in Porous Medium
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3261
3265
.
51.
Cortell
,
R.
, 2011, “
Suction, Viscous Dissipation and Thermal radiation Effects on the Flow and Heat Transfer of a Power-Law Fluid Past an Infinite Porous Plate
,”
Chem. Eng. Res. Des.
,
89
, pp.
85
93
.
52.
Prasad
,
K. V.
, and
Vajravelu
,
K.
, 2009, “
Heat Transfer in the MHD Flow of a Power Law Fluid Over a Non-Isothermal Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4956
4965
.
You do not currently have access to this content.