One of the main challenges of spray cooling technology is the prediction of local and average heat transfer coefficients on the heater surface. It is hypothesized that the local heat transfer coefficient can be predicted from the local normal pressure produced by the spray. In this study, hollow cone, full cone, and flat fan sprays, operated at three standoff distances, five spray pressures, and two nozzle orientations, were used to identify the relation between the impingement pressure and the heat transfer coefficient in the single-phase regime. PF-5060, PAO-2, and PSF-3 were used as test fluids, resulting in Prandtl number variation between 12 and 76. A microheater array operated at constant temperature was used to measure the local heat flux. A separate test rig was used to make impingement pressure measurements for the same geometry and spray pressure. The heat flux data were then compared with the corresponding impingement pressure data to develop a pressure-based correlation for spray cooling heat transfer. The maximum deviation between the experimental data and prediction was within ±25%.

1.
Kim
,
J.
, 2007, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
753
767
.
2.
Manglik
,
R. M.
, and
Jog
,
M. A.
, 2009, “
Molecular-to-Large-Scale Heat Transfer With Multiphase Interfaces: Current Status and New Directions
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
121001
.
3.
Landero
,
J. C.
, and
Watkins
,
A. P.
, 2008, “
Modeling of Steady-State Heat Transfer in a Water Spray Impingement Onto a Heated Wall
,”
Atomization Sprays
1044-5110,
18
, pp.
1
47
.
4.
Jia
,
J.
,
Guo
,
Y.
,
Wang
,
W.
, and
Zhou
,
S.
, 2008, “
Modeling and Experimental Research on Spray Cooling
,”
24th IEEE SEMI-THERM Symposium
, pp.
118
123
.
5.
Mzad
,
H.
, and
Tebbal
,
M.
, 2009, “
Thermal Diagnostics of Highly Heated Surfaces Using Water-Spray Cooling
,”
Heat Mass Transfer
0947-7411,
45
, pp.
287
295
.
6.
Chen
,
R. H.
,
Tan
,
D.
,
Lin
,
D. S.
,
Chow
,
L. C.
,
Griffin
,
A. R.
, and
Rini
,
D. P.
, 2008, “
Droplet and Bubble Dynamics in Saturated FC-72 Spray Cooling on a Smooth Surface
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
101501
.
7.
Sarkar
,
S.
, and
Selvam
,
R. P.
, 2009, “
Direct Numerical Simulation of Heat Transfer in Spray Cooling Through 3D Multiphase Flow Modeling Using Parallel Computing
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
121007
.
8.
Bratuta
,
E. G.
, and
Ivanowsky
,
A. Y.
, 1982, “
Intensification of Heat and Mass Transfer During Cooling by Dispersed Fluids
,”
Energa-Machinotroenia
,
33
, pp.
98
101
.
9.
Karwa
,
N.
,
Kale
,
S.
, and
Subbarao
,
P. M. V.
, 2007, “
Experimental Study of Non-Boiling Heat Transfer From a Horizontal Surface by Water Sprays
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
571
579
.
10.
Hsieh
,
S.
, and
Tien
,
C.
, 2007, “
R-134a Spray Dynamics and Impingement Cooling in Non-Boiling Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
502
512
.
11.
Panão
,
M. R. O.
, and
Moreira
,
A. L. N.
, 2005, “
Thermo- and Fluid Dynamics Characterization of Spray Cooling With Pulsed Spray
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
79
96
.
12.
Moreira
,
A. L. N.
,
Caravalho
,
J.
, and
Panão
,
M. P. O.
, 2007, “
An Experimental Methodology to Quantify the Spray Cooling Event at Intermittent Spray Impact
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
191
202
.
13.
Panão
,
M. R. O.
, and
Moreira
,
A. L. N.
, 2009, “
Heat Transfer Correlation for Intermittent Spray Impingement: A Dynamic Approach
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
1853
1862
.
14.
Arcoumanis
,
C.
, and
Chang
,
J. C.
, 1993, “
Heat Transfer Between a Heated Plate and an Impinging Transient Diesel Spray
,”
Exp. Fluids
0723-4864,
16
, pp.
105
119
.
15.
Hede
,
P. D.
,
Bach
,
P.
, and
Jensen
,
A. D.
, 2008, “
Validation of the Flux Number as Scaling Parameter for Top-Spray Fluidized Bed Systems
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
815
828
.
16.
Ashwood
,
A. C.
, and
Shedd
,
T. A.
, 2007, “
Spray Cooling With Mixtures of Dielectric Fluids
,”
23rd IEEE SEMI-THERM Symposium
, pp.
144
149
.
17.
Shedd
,
T. A.
, 2007, “
Next Generation Spray Cooling: High Heat Flux Management in Compact Space
,”
Heat Transfer Eng.
0145-7632,
28
(
2
), pp.
87
92
.
18.
Estes
,
K. A.
, and
Mudawar
,
I.
, 1995, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
16
), pp.
2985
2996
.
19.
Rybicki
,
J. R.
, and
Mudawar
,
I.
, 2006, “
Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
5
16
.
20.
Visaria
,
M.
, and
Mudawar
,
I.
, 2008, “
Theoretical and Experimental Study of Spray Inclination on Two-Phase Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2398
2410
.
21.
Oguz
,
H. N.
, and
Prosperetti
,
A.
, 1990, “
Bubble Entrainment by the Impact of Drops on Liquid Surfaces
,”
J. Fluid Mech.
0022-1120,
219
, pp.
143
179
.
22.
Prosperetti
,
A.
, and
Oguz
,
H. N.
, 1993, “
The Impact of Drops on Liquid Surface and the Underwater Noise of Rain
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
, pp.
577
602
.
23.
Zhu
,
Y.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
, 2000, “
On the Mechanism of Air Entrainment by Liquid Jets at a Free Surface
,”
J. Fluid Mech.
0022-1120,
404
, pp.
151
177
.
24.
Fedorchenko
,
A. I.
, and
Wang
,
A. B.
, 2004, “
On Some Common Features of Drop Impact on Liquid Surfaces
,”
Phys. Fluids
1070-6631,
16
(
5
), pp.
1349
1365
.
25.
Weiss
,
D.
, and
Yarin
,
A.
, 1999, “
Single Drop Impact Onto Liquid Films: Neck Distortion, Jetting, Tiny Bubble Entrainment, and Crown Formation
,”
J. Fluid Mech.
0022-1120,
385
, pp.
229
254
.
26.
Josserand
,
C.
, and
Zaleski
,
S.
, 2003, “
Droplet Splashing on a Thin Film
,”
Phys. Fluids
1070-6631,
15
(
6
), pp.
1650
1657
.
27.
Some
,
T.
,
Lehmann
,
E.
,
Sakamoto
,
H.
,
Kim
,
J.
,
Chung
,
J. T.
, and
Steinthorsson
,
E.
, 2007, “
Pressure Based Prediction of Spray Cooling Heat Transfer Coefficient
,”
Proceedings of IMECE 2007
, Seattle, WA, Nov. 11–15.
28.
Abbasi
,
B.
,
Kim
,
J.
, and
Marshall
,
A.
, 2010, “
Dynamics Pressure Based Prediction of Spray Cooling Heat Transfer Coefficient
,”
Int. J. Multiphase Flow
0301-9322,
36
(
6
), pp.
491
502
.
29.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Horizontal Heaters During Pool Boiling of FC-72
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
386
393
.
30.
Bae
,
S.
,
Kim
,
M. H.
, and
Kim
,
J.
, 1999, “
Improved Technique to Measure Time and Space Resolved Heat Transfer Under Single Bubbles During Saturated Pool Boiling of FC-72
,”
Exp. Heat Transfer
0891-6152,
12
(
3
), pp.
265
278
.
31.
Horacek
,
B.
,
Kiger
,
K. T.
, and
Kim
,
J.
, 2005, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1425
1438
.
You do not currently have access to this content.