The three-dimensional laminar and steady boundary layer flow of an electrically nonconducting and incompressible magnetic fluid, with low Curie temperature and moderate saturation magnetization, over an elastic stretching sheet, is numerically studied. The fluid is subject to the magnetic field generated by an infinitely long, straight wire, carrying an electric current. The magnetic fluid far from the surface is at rest and at temperature greater of that of the sheet. It is also assumed that the magnetization of the fluid varies with the magnetic field strength H and the temperature T. The numerical solution of the coupled and nonlinear system of ordinary differential equations, resulting after the introduction of appropriate nondimensional variables, with its boundary conditions, describing the problem under consideration, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the case of a representative water-based magnetic fluid and for specific values of the dimensionless parameters entering into the problem, and the obtained results are presented graphically for these values of the parameters. The analysis of these results showed that there is an interaction between the motions of the fluid, which are induced by the stretching surface and by the action of the magnetic field, and the flow field is noticeably affected by the variations in the magnetic interaction parameter β. The important results of the present analysis are summarized in Sec. 6.

1.
Crane
,
L. J.
, 1970, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
0044-2275,
21
, pp.
645
647
.
2.
Gupta
,
P. S.
, and
Gupta
,
A. S.
, 1977, “
Heat and Mass Transfer on a Stretching Sheet With Suction and Blowing
,”
Can. J. Chem. Eng.
0008-4034,
55
, pp.
744
746
.
3.
Chakrabarti
,
A.
, and
Gupta
,
A. S.
, 1979, “
Hydromagnetic Flow, Heat and Mass Transfer Over a Stretching Sheet
,”
Q. Appl. Math.
0033-569X,
33
, pp.
73
78
.
4.
Carragher
,
P.
, and
Crance
,
L. J.
, 1982, “
Heat Transfer on a Continuous Stretching Sheet
,”
Z. Angew. Math. Mech.
0044-2267,
62
, pp.
564
565
.
5.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
, 1985, “
Temperature Field in Flow Over a Stretching Sheet With Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
0735-1933,
12
, pp.
89
94
.
6.
Jeng
,
D. R.
,
Chang
,
T. C. A.
, and
DeWitt
,
K. J.
, 1986, “
Momentum and Heat Transfer on a Continuous Moving Surface
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
532
539
.
7.
Dutta
,
B. K.
, 1989, “
Heat Transfer From a Stretching Sheet With Uniform Suction and Blowing
,”
Acta Mech.
0001-5970,
78
, pp.
255
262
.
8.
Andersson
,
H. I.
, 1995, “
An Exact Solution of the Navier-Stokes Equations for MHD Flow
,”
Acta Mech.
0001-5970,
113
, pp.
241
244
.
9.
Chiam
,
T. C.
, 1996, “
Heat Transfer With Variable Conductivity in a Stagnation-Point Flow Towards a Stretching Sheet
,”
Int. Commun. Heat Mass Transfer
0735-1933,
23
, pp.
239
248
.
10.
Vajravelu
,
K. A.
, and
Hadjinicolaou
,
A.
, 1997, “
Convective Heat Transfer in an Electrically Conducting Fluid at Stretching Surface With Uniform Free Stream
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
1237
1244
.
11.
Wang
,
C. Y.
, 1984, “
The Three-Dimensional Flow Due to a Stretching Flat Surface
,”
Phys. Fluids
0031-9171,
27
, pp.
1915
1917
.
12.
Ariel
,
P. D.
, 2003, “
Generalized Three-Dimensional Flow Due to a Stretching Sheet
,”
Z. Angew. Math. Mech.
0044-2267,
83
, pp.
844
852
.
13.
Takhar
,
H. S.
,
Chamka
,
A. J.
, and
Nath
,
G.
, 2001, “
Unsteady Three-Dimensional MHD—Boundary-Layer Flow Due to the Impulsive Motion of a Stretching Surface
,”
Acta Mech.
0001-5970,
146
, pp.
59
71
.
14.
Tzirtzilakis
,
E. E.
, 2005, “
A Mathematical Model for Blood Flow in Magnetic Field
,”
Phys. Fluids
1070-6631,
17
, p.
077103
.
15.
Neuringer
,
J. L.
, and
Rosensweig
,
R. E.
, 1964, “
Ferro Hydrodynamics
,”
Phys. Fluids
0031-9171,
7
, pp.
1927
1937
.
16.
Neuringer
,
J. L.
, 1966, “
Some Viscous Flows of a Saturated Ferro Fluid Under the Combined Influence of Thermal and Magnetic Field Gradients
,”
Int. J. Non-Linear Mech.
0020-7462,
1
, pp.
123
127
.
17.
Bailey
,
R. L.
, 1983, “
Lesser Known Applications of Ferro Fluids
,”
J. Magn. Magn. Mater.
0304-8853,
39
, pp.
178
182
.
18.
Rosensweig
,
R. E.
, 1985,
Ferro Hydrodynamics
,
Cambridge University Press
,
Cambridge, MA
.
19.
Rosensweig
,
R. E.
, 1987, “
Magnetic Fluids
,”
Annu. Rev. Fluid Mech.
0066-4189,
19
, pp.
437
463
.
20.
Arrot
,
A. S.
,
Heinrich
,
B.
, and
Templeton
,
T. L.
, 1989, “
Phenomenology of Ferromagnetism: I. Effects of Magnetostatics on Susceptibility
,”
IEEE Trans. Magn.
0018-9464,
25
(
6
), pp.
4364
4373
.
21.
Eringen
,
A. C.
, and
Maugin
,
G. A.
, 1990,
Electrodynamics of Continua II: Fluids and Complex Media
,
Springer
,
New York
.
22.
Li
,
X. L.
,
Yao
,
K. L.
, and
Liu
,
Z. L.
, 2007, “
Numerical Study on the Magnetic Fluid Flow in a Channel Surrounding a Permanent Magnet Under Temperature Field
,”
Mod. Phys. Lett. B
0217-9849,
21
(
19
), pp.
1271
1283
.
23.
Andersson
,
H. I.
, and
Valnes
,
O. A.
, 1998, “
Flow of a Heated Ferro Fluid Over a Stretching Sheet in the Presence of a Magnetic Dipole
,”
Acta Mech.
0001-5970,
128
, pp.
39
47
.
24.
Tzirtzilakis
,
E. E.
, and
Kafoussias
,
N. G.
, 2003, “
Biomagnetic Fluid Flow Over a Stretching Sheet With Non Linear Temperature Dependent Magnetization
,”
ZAMP
0044-2275,
54
, pp.
551
565
.
25.
Matsuki
,
H.
,
Yamasawa
,
K.
, and
Murakami
,
K.
, 1977, “
Experimental Considerations on a New Automatic Cooling Device Using Temperature Sensitive Magnetic Fluid
,”
IEEE Trans. Magn.
0018-9464,
13
(
5
), pp.
1143
1145
.
26.
Matsuki
,
H.
, and
Murakami
,
K.
, 1987, “
Performance of an Automatic Cooling Device Using a Temperature-Sensitive Magnetic Fluid
,”
J. Magn. Magn. Mater.
0304-8853,
65
, pp.
363
365
.
27.
Nakatsuka
,
K.
,
Hama
,
H.
, and
Takahashi
,
J.
, 1990, “
Heat Transfer in Temperature-Sensitive Magnetic Fluids
,”
J. Magn. Magn. Mater.
0304-8853,
85
, pp.
207
209
.
28.
Upadhyay
,
T.
,
Upadhyay
,
R. V.
,
Mehta
,
R. V.
,
Aswal
,
V. K.
, and
Goyal
,
P. S.
, 1997, “
Characterization of a Temperature-Sensitive Magnetic Fluid
,”
Phys. Rev. B
0163-1829,
55
(
9
), pp.
5585
5588
.
29.
Upadhyay
,
R. V.
,
Mehta
,
R. V.
,
Parekh
,
K.
,
Srinivas
,
D.
, and
Pant
,
R. P.
, 1999, “
Gd-Substituted Ferrite Ferrofluid: A Possible Candidate to Enhance Pyromagnetic Coefficient
,”
J. Magn. Magn. Mater.
0304-8853,
201
, pp.
129
132
.
30.
Mukhopadhyay
,
A.
,
Gangulu
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
, 2005, “
A Scaling Analysis to Characterize Thermomagnetic Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3485
3492
.
31.
John
,
T.
,
Rannacher
,
D.
, and
Engel
,
A.
, 2007, “
Influence of Surface Tension on the Conical Meniscus of a Magnetic Fluid in the Field of a Current-Carrying Wire
,”
J. Magn. Magn. Mater.
0304-8853,
309
, pp.
31
35
.
32.
Fruh
,
W. -G.
, 2005, “
Using Magnetic Fluids to Simulate Convection in a Central Force Field in the Laboratory
,”
Nonlinear Processes Geophys.
1023-5809,
12
, pp.
877
889
.
33.
Tzirtzilakis
,
E. E.
, and
Tanoudis
,
G. B.
, 2003, “
Numerical Study of Bio Magnetic Fluid Flow Over a Stretching Sheet With Heat Transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
13
(
7
), pp.
830
848
.
34.
Kafoussias
,
N. G.
, and
Williams
,
E. W.
, 1993, “
An Improved Approximation Technique to Obtain Numerical Solution of a Class of Two-Point Boundary Value Similarity Problems in Fluid Mechanics
,”
Int. J. Numer. Methods Fluids
0271-2091,
17
, pp.
145
162
.
35.
Kafoussias
,
N. G.
, and
Williams
,
E. W.
, 1995, “
Thermal-Diffusion and Diffusion-Thermo Effects on Mixed Free-Forced Convective and Mass Transfer Boundary Layer Flow With Temperature Dependent Viscosity
,”
Int. J. Eng. Sci.
0020-7225,
33
(
9
), pp.
1369
1384
.
You do not currently have access to this content.