While microchannel flow boiling has received much research attention, past work has not considered the impact of acoustic waves generated by rapidly nucleating bubbles. The present work provides a theoretical framework for these pressure waves, which resembles classical “water hammer” theory and predicts a strong influence on bubble nucleation rates and effective convection coefficients. These pressure waves result directly from confinement in microchannel geometries, reflect from geometrical transitions, and superimpose to create large transients in the static liquid pressure. Feedback from the pressure waves inhibits bubble growth rates, reducing the effective heat transfer. Pressure depressions generated by the propagating pressure pulses can cause other bubbles to grow at lower than expected wall temperatures. The additional nucleation enhances heat transfer over short times but increased flow instability may inhibit heat transfer over longer periods. The limited quantitative measurements available in the literature indicate confined bubble growth rates in microchannels are significantly lower than those predicted by the classical Rayleigh–Plesset equation. The present model predicts confined bubble growth rates to within ± 20%. A nondimensional number indicative of the relative magnitude of the water hammer pressure to bubble pressure is proposed to characterize the transitions from conventional to microchannel flow boiling.

1.
Prasher
,
R. S.
,
Chang
,
J. Y.
,
Sauciuc
,
I.
,
Narasimhan
,
S.
,
Chau
,
D.
,
Chrysler
,
G.
,
Myers
,
A.
,
Prstic
,
S.
, and
Hu
,
C.
, 2005, “
Electronic Package Technology Development
,”
Intel Technol. J.
1535-864X,
9
(
4
), pp.
285
296
.
2.
Zhang
,
L.
,
Koo
,
J. -M.
,
Jiang
,
L.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2001, “
Study of Boiling Regimes and Transient Signal Measurements in Microchannels
,”
11th International Conference on Solid-State Sensors and Actuators
, Munich, Germany, pp.
1514
1517
.
3.
Qu
,
W. A.
, and
Mudawar
,
I.
, 2002, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,” ASME Paper No. IMECE2002-33711.
4.
Peles
,
Y.
, 2003, “
Two-Phase Boiling Flow in Microchannels—Instabilities Issues and Flow Regime Mapping
,” ASME Paper No. ICMM2003-1069.
5.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
, 1973, “
Review of Two-Phase Instability
,”
Nucl. Eng. Des.
0029-5493,
25
, pp.
165
192
.
6.
Carey
,
V.
, 1992,
Liquid-Vapor Phase-Change Phenomena
,
Taylor & Francis
,
London
.
7.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
, 2003, “
High Speed Photographic Observation of Flow Patterns During Flow Boiling in Single Rectangular Minichannel
,” ASME Paper No. HT2003-47175.
8.
Hetsroni
,
G.
,
Klein
,
D.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Convective Boiling in Parallel Micro-Channels
,” ASME Paper No. ICMM2003-1007.
9.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in a Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
80
87
.
10.
Zhang
,
L.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
, 2002, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly-Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
12
19
.
11.
Lee
,
M.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2003, “
Integrated Micro-Heat-Pipe Fabrication Technology
,”
J. Microelectromech. Syst.
1057-7157,
12
(
2
), pp.
138
146
.
12.
Fogg
,
D.
,
Flynn
,
R.
,
Hidrovo
,
C.
,
Zhang
,
L.
, and
Goodson
,
K.
, 2004, “
Fluorescent Imaging of Void Fraction in Two-Phase Microchannels
,” Pisa, Italy, Paper No. SGK07.
13.
Chavan
,
N.
,
Bhattacharya
,
A.
, and
Iyer
,
K.
, 2005, “
Modeling of Two-Phase Flow Instabilities in Microchannels
,” Paper No. ICMM2005-75048.
14.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2005, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Architectures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
49
58
.
15.
Ajaev
,
V. S.
, and
Homsy
,
G. M.
, 2003, “
Mathematical Modeling of Constrained Vapor Bubbles
,” ASME Paper No. ICMM2003-1072.
16.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
, 2004, “
Numerical Study of the Growth of a Vapor Bubble During Flow Boiling of Water in Microchannels
,” ASME Paper No. ICMM2004-2382.
17.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
, 2005, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,” ASME Paper No. ICMM2005-75143.
18.
Zhang
,
J. T.
,
Peng
,
X. F.
, and
Peterson
,
G. P.
, 2000, “
Analysis of Phase Change Mechanisms in Microchannels Using Cluster Nucleation Theory
,”
Microscale Thermophys. Eng.
1089-3954,
4
(
3
), pp.
177
187
.
19.
Inasaka
,
F.
,
Adachi
,
M.
,
Shiozaki
,
K.
,
Aya
,
I.
, and
Nariai
,
H.
, 2005, “
Water Hammer Caused by Rapid Gas Production in Severe Accident in a Light Water Reactor
,”
JSME Int. J., Ser. B
1340-8054,
48
(
1
), pp.
48
55
.
20.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
21.
Lu
,
X.
,
Properetti
,
A.
,
Toegel
,
R.
, and
Lohse
,
D.
, 2003, “
Harmonic Enhancement of Single-Bubble Luminescence
,”
Phys. Rev. E
1063-651X,
67
, p.
056310
.
22.
Plesset
,
M. S.
, and
Zwick
,
S. A.
, 1952, “
A Nonsteady Heat Diffusion Problem With Spherical Symmetry
,”
J. Appl. Phys.
0021-8979,
23
(
1
), pp.
95
98
.
23.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
941
955
.
24.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
25.
Wark
,
K.
, 1995,
Advanced Thermodynamics for Engineers
,
McGraw-Hill
,
New York
.
26.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
New York
.
27.
Fogg
,
D.
, and
Goodson
,
K. E.
, 2006, “
The Effects of Liquid Compressibility on the Nucleation and Growth of Bubbles in Forced Convective Flow Boiling Within Microchannels
,” ASME Paper No. ICNMM2006-96208.
28.
Sabersky
,
R.
,
Acosta
,
A. J.
,
Hauptmann
,
E. G.
, and
Gates
,
E. M.
, 1999,
Fluid Flow
,
Prentice-Hall
,
Upper Saddle River, NJ
.
29.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
Mcinnis
,
D. A.
, and
Axworthy
,
D. H.
, 2005, “
A Review of Water Hammer Theory and Practice
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
49
76
.
30.
Lee
,
M.
,
Cheung
,
L. S. L.
,
Lee
,
Y. K.
, and
Zohar
,
Y.
, 2005, “
Height Effect on Nucleation-Site Activity and Size-Dependent Bubble Dynamics in Microchannel Convective Boiling
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2121
2129
.
31.
Hetsroni
,
G.
,
Klein
,
D.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Convective Boiling in Parallel Micro-Channels
,”
Microscale Thermophys. Eng.
1089-3954,
8
, pp.
403
421
.
32.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
8
16
.
33.
Kandlikar
,
S. G.
, 1990, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
219
228
.
34.
Kramer
,
T.
,
Flynn
,
R. D.
,
Fogg
,
D. W.
,
Wang
,
E. N.
,
Hidrovo
,
C. H.
,
Goodson
,
K. E.
,
Prasher
,
R. S.
,
Chau
,
D. S.
, and
Narasimhan
,
S.
, 2004, “
Microchannel Experimental Structure for Measuring Temperature Fields During Convective Boiling
,” ASME Paper No. IMECE2004-61936.
35.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
, 2006, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
0889-9746,
22
(
2
), pp.
135
171
.
36.
Lam
,
K. W.
,
Drake
,
J. M.
, and
Cobbold
,
R. S. C.
, 1999, “
Generation and Maintenance of Bubbles in Small Tubes by Low-Frequency Ultrasound
,”
J. Acoust. Soc. Am.
0001-4966,
106
(
6
), pp.
3719
3729
.
37.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2002, “
Evolution of Microchannel Flow Passages-Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
3
17
.
38.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 2000, “
Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design
,”
Appl. Mech. Rev.
0003-6900,
53
(
7
), pp.
175
193
.
39.
Kew
,
P.
, and
Cornwell
,
K.
, 1997, “
Correlations for Predictions of Boiling Heat Transfer in Small Diameter Channels
,”
Appl. Therm. Eng.
1359-4311,
17
, pp.
705
715
.
40.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
, 2005, “
Experimental Study of Flow Patterns Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
20
27
.
41.
Li
,
H. Y.
,
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Two-Phase Flow Phenomena for Boiling in Two Parallel Microchannels
,” ASME Paper No. ICMM2004-2384.
You do not currently have access to this content.