The two-phase flow and boiling heat transfer in horizontal metal-foam filled tubes are experimentally investigated. The results show that the heat transfer is almost doubled by reducing the cell size from 20 ppi to 40 ppi for a given porosity, thanks to more surface area and strong flow mixing for the smaller cell size. The boiling heat transfer coefficient keeps steady rising, albeit slowly, by increasing the vapor quality for high mass flow rates, while the same story does not hold for the cases of low mass flow rates. The flow pattern can be indirectly judged through monitoring the cross-sectional wall surface temperature fluctuations and wall-refrigerant temperature difference. As the operating pressure increases, the boiling heat transfer at low vapor quality (x<0.1) exhibits similar behavior with pool boiling heat transfer, namely, the heat transfer is enhanced by improving the pressure. However the flow boiling heat transfer is suppressed to some extent as the pressure increases. The heat transfer coefficient of copper foam tubes is approximately three times higher than that of plain tubes.

1.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
2.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
827
836
.
3.
Zhao
,
C. Y.
,
Lu
,
T. J.
,
Hodson
,
H. P.
, and
Jackson
,
J. D.
, 2004, “
The Temperature Dependence of Effective Thermal Conductivity of Open-Celled Steel Alloy Foams
,”
Mater. Sci. Eng., A
0921-5093,
367
, pp.
123
131
.
4.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2004, “
Thermal Radiation in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2927
2939
.
5.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
301
309
.
6.
Lee
,
Y. C.
,
Zhang
,
W.
,
Xie
,
H.
, and
Mahajan
,
R. L.
, 1993, “
Cooling of a FCHIP Package With 100 W 1 cm2
Chip,”
Proceedings of the 1993 ASME International Electronic Packaging Conference
, New York, Vol.
1
, pp.
419
423
.
7.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Celled Metal Foams
,”
Acta Mater.
1359-6454,
46
, pp.
3619
3635
.
8.
Bastarows
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
, 1998, “
Evaluation of Cellular Metal Heat Dissipation Media
,” Harvard University, Technical Report No. MECH-325.
9.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
10.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
572
578
.
11.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
, 2001, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1451
1454
.
12.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
263
272
.
13.
Boomsma
,
K.
, 2002,
Metal Foams as Novel Compact High Performance Heat Exchangers for the Cooling of Electronics
, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.
14.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
15.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
16.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2004, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
3
), pp.
309
317
.
17.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2005, “
Natural Convection in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2452
2463
.
18.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3781
3793
.
19.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
, 2006, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers, II. Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2762
2770
.
20.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
, 2006, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers, I. Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2751
2761
.
21.
Ng
,
K. C.
,
Anutosh
,
C.
,
Sai
,
M. A.
, and
Wang
,
X. L.
, 2006, “
New Pool Boiling Data for Water With Copper-Foam Metal at Sub-Atmospheric Pressures: Experiments and Correlation
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1286
1290
.
22.
Rojas
,
M. E.
,
de Andrés
,
M. C.
, and
González
,
L.
, 2008, “
Designing Capillary Systems to Enhance Heat Transfer in LS3 Parabolic Trough Collectors for Direct Steam Generator
,”
Sol. Energy
0038-092X,
82
, pp.
53
60
.
23.
Miscevic
,
M.
,
Rahli
,
O.
,
Tadrist
,
L.
, and
Topin
,
F.
, 2006, “
Experiments on Flows, Boiling and Heat Transfer in Porous Media: Emphasis on Bottom Injection
,”
Nucl. Eng. Des.
0029-5493,
236
, pp.
2084
2103
.
24.
Kaya
,
T.
, and
Goldak
,
J.
, 2006, “
Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3211
3220
.
25.
Imke
,
U.
, 2004, “
Porous Media Simplified Simulation of Single- and Two-Phase Flow Heat Transfer in Micro-Channel Heat Exchangers
,”
Chem. Eng. J.
0300-9467,
101
, pp.
295
302
.
26.
Chen
,
Z. Q.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 2000, “
An Experimental Study of Two Phase Flow and Boiling Heat Transfer in Bi-Dispersed Porous Channels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
, pp.
293
302
.
27.
Liao
,
Q.
, and
Zhao
,
T. S.
, 2000, “
A Visual Study of Phase-Change Heat Transfer in a Two-Dimensional Porous Structure With a Partial Heating Boundary
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1089
1102
.
28.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Mech. Eng.
0039-2472,
75
, pp.
3
8
.
30.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
, 1998, “
Flow Boiling in Horizontal Tubes: Part 1—Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer
0022-1481,
120
(
1
), pp.
140
147
.
31.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
, 2005, “
Investigation of Flow Boiling in Horizontal Tubes: Part I—A New Diabatic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2955
2969
.
32.
Lu
,
W.
,
Zhao
,
C. Y.
,
Xu
,
Z. Y.
, and
Tassou
,
S.
, 2007, “
The R134a Vapour Flow Heat Transfer in Horizontal Metal-Foam Tubes
,”
Tenth UK National Heat Transfer Conference
, Edinburg, UK.
You do not currently have access to this content.