The scientific understanding of multiphase interfaces and the associated convective mass, momentum, and heat transport across and along their boundaries, provide the fundamental underpinnings of the advancement of boiling heat transfer, two-phase flows, heat pipes, spray cooling, and droplet-film coating, among many other engineering applications. Numerous studies have tried to characterize the interfacial behavior and model their mechanistic influences either directly or implicitly via parametric experimental investigations and/or simulations. The goal of advancing our understanding as well as developing generalized, perhaps “universal,” and more accurate phenomenological or mechanistic correlations, for predicting mass, momentum, and heat transfer, continues to engage the worldwide research community. A collection of some such current investigations that are representative of both basic and applied issues in the field is presented in this special issue of the Journal of Heat Transfer.

1.
Jaycock
,
M. J.
, and
Parfitt
,
G. D.
, 1981,
Chemistry of Interfaces
,
Ellis Horwood
,
Chichester, UK
.
2.
Myers
,
D.
, 1999,
Surfaces, Interfaces, and Colloids
, 2nd ed.,
Wiley-VCH
,
New York
.
3.
Hunter
,
R. J.
, 2001,
Foundations of Colloid Science
,
Oxford University Press
,
Oxford, UK
.
4.
Bergles
,
A. E.
, 1988,
Fundamentals of Boiling and Evaporation, Two-Phase Flow Heat Exchangers: Thermal-Hydraulic Fundamentals and Design
,
S.
Kakac
,
A. E.
Bergles
, and
E. O.
Fernandes
, eds.,
Kluwer
,
The Netherlands
, pp.
159
200
.
5.
Dhir
,
V. K.
, 1998, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
365
401
.
6.
Kenning
,
D. B. R.
, 1999, “
What Do We Really Know About Nucleate Boiling
?,”
IMechE Conference Transactions
, 6th UK National Heat Transfer Conference, Edinburgh, UK, pp.
143
167
.
7.
Collier
,
J. G.
, and
Thome
,
J. R.
, 2001,
Convective Boiling and Condensation
, 3rd ed.,
Oxford University Press
,
Oxford, UK
.
8.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
,
New York
.
9.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Chung
,
J. N.
, 1997,
Transport Phenomena With Drops and Bubbles
,
Springer
,
New York
.
10.
de Gennes
,
P.
,
Brochard-Wyard
,
F.
, and
Quere
,
D.
, 2004,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer
,
New York
.
11.
Jakob
,
M.
, 1936, “
Heat Transfer in Evaporation and Condensation—I
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
58
, pp.
643
660
.
12.
McAdams
,
W. H.
,
Kennel
,
W. E.
,
Mindon
,
C. S.
,
Carl
,
R.
,
Picornel
,
P. M.
, and
Dew
,
J. E.
, 1949, “
Heat Transfer to Water With Surface Boiling
,”
Ind. Eng. Chem.
0019-7866,
41
, pp.
1945
1953
.
13.
Morgan
,
A. I.
,
Bromley
,
L. A.
, and
Wilke
,
C. R.
, 1949, “
Effect of Surface Tension on Heat Transfer in Boiling
,”
Ind. Eng. Chem.
0019-7866,
41
, pp.
2767
2769
.
14.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
74
(
3
), pp.
969
976
.
15.
Hsu
,
Y. Y.
, 1962, “
On the Size of Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
207
216
.
16.
Han
,
C. -Y.
, and
Griffith
,
P.
, 1965, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part I: Bubble Initiation, Growth and Departure
,”
Int. J. Heat Mass Transfer
0017-9310,
8
(
6
), pp.
887
904
.
17.
Han
,
C. -Y.
, and
Griffith
,
P.
, 1965, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part II: The Heat Flux-Temperature Difference Relation
,”
Int. J. Heat Mass Transfer
0017-9310,
8
(
6
), pp.
905
914
.
18.
Dhir
,
V. K.
, and
Liaw
,
S. P.
, 1989, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
739
746
.
19.
Lay
,
J. H.
, and
Dhir
,
V. K.
, 1995, “
Shape of a Vapor Stem During Nucleate Boiling of Saturated Liquids
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
394
401
.
20.
Manglik
,
R. M.
, and
Kraus
,
A. D.
, 1996,
Process, Enhanced, and Multiphase Heat Transfer
,
Begell House
,
New York
.
21.
Dhir
,
V. K.
, 2001, “
Numerical Simulation of Pool-Boiling Heat Transfer
,”
AIChE J.
0001-1541,
47
(
4
), pp.
813
834
.
22.
Bergles
,
A. E.
,
Lienhard
,
J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
, 2003, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
18
40
.
23.
Thomas
,
O. C.
,
Cavicchi
,
R. E.
, and
Tarlov
,
M. J.
, 2003, “
Effect of Surface Wettability on Fast Transient Microboiling Behaviour
,”
Langmuir
0743-7463,
19
, pp.
6168
6177
.
24.
Shoji
,
M.
, 2004, “
Studies of Boiling Chaos: A Review
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
6–7
), pp.
1105
1128
.
25.
Bergles
,
A. E.
, 2008, “
Thermal-Hydraulic Phenomena in Microchannels With Boiling
,”
Heat Transfer Res.
,
39
(
4
), pp.
327
346
.
26.
Subramani
,
A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, 2008, “
Air-Water Ebullience Systems: Visualizing Single Bubble to Wave Instability Signatures
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), p.
080905
.
27.
Chandra
,
S.
, and
Avedisian
,
C. T.
, 1991, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
0950-1207,
432
(
1884
), pp.
13
41
.
28.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1995, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
0301-9322,
21
, pp.
151
173
.
29.
Pasandideh-Fard
,
M.
,
Qiao
,
Y. M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 1996, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
1070-6631,
8
(
3
), pp.
650
658
.
30.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
, 1997, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
0001-1541,
43
(
9
), pp.
2169
2179
.
31.
Park
,
H.
, and
Carr
,
W. W.
, 2003, “
Single Drop Impaction on a Solid Surface
,”
AIChE J.
0001-1541,
49
(
10
), pp.
2461
2471
.
32.
Ukiwe
,
C.
, and
Kwok
,
K. Y.
, 2005, “
On the Maximum Spreading Diameter of Impacting Droplets on Well Prepared Solid Surfaces
,”
Langmuir
0743-7463,
21
, pp.
666
673
.
33.
Yarin
,
A. L.
, 2006, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
159
192
.
34.
Sikalo
,
S.
, and
Ganic
,
E. N.
, 2006, “
Phenomena of Droplet-Surface Interactions
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
97
110
.
35.
Sanjeev
,
A.
,
Huzayyin
,
O.
,
Gatne
,
K. P.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 2008, “
Short Time Impact and Cooling of Water Droplets Impinging on Hydrophobic and Hydrophilic Surfaces
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), p.
080903
.
36.
Nukiyama
,
S.
, 1966, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
0017-9310,
9
, pp.
1419
1433
.
37.
Jakob
,
M.
, and
Fritz
,
W.
, 1931, “
Versuche über den Verdampfungsvorgang
,”
Forsch. Geb. Ingenieurwes.
0367-2204,
2
, pp.
435
447
.
38.
Berenson
,
P. J.
, 1962, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
5
(
10
), pp.
985
999
.
39.
Cooper
,
M. G.
, and
Lloyd
,
A. J. P.
, 1969, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
12
(
8
), pp.
895
913
.
40.
Roy Chowdhury
,
S. K.
, and
Winterton
,
R. H. S.
, 1985, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
10
), pp.
1881
1889
.
41.
Bar-Cohen
,
A.
, 1992, “
Hysteresis Phenomena at the Onset of Nucleate Boiling
,”
ASME Conference on Pool and External Flow Boiling
, ASME, New York, pp.
1
14
.
42.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
43.
Chen
,
J. C.
, 2003, “
Surface Contact and Its Significance for Multiphase Heat Transfer: Diverse Examples
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
549
566
.
44.
Thome
,
J. R.
, 1990,
Enhanced Boiling Heat Transfer
,
Hemisphere
,
New York
.
45.
Bergles
,
A. E.
, 1997, “
Enhancement of Pool Boiling
,”
Int. J. Refrig.
0140-7007,
20
(
8
), pp.
545
551
.
46.
Bergles
,
A. E.
, 2000, “
New Frontiers in Enhanced Heat Transfer
,”
Advances in Enhanced Heat Transfer
(
HTD
), Vol.
365
,
R. M.
Manglik
,
T. S.
Ravigururajan
,
A.
Muley
,
R. A.
Papar
, and
J.
Kim
, eds.,
ASME
,
New York
, pp.
1
8
.
47.
Manglik
,
R. M.
, 2003, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
New York
, Chap. 14.
48.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2004, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
1065-5131,
11
(
2
), pp.
87
118
.
49.
Manglik
,
R. M.
, 2006, “
On the Advancements in Boiling, Two-Phase Flow Heat Transfer, and Interfacial Phenomena
,”
ASME J. Heat Transfer
0022-1481,
128
(
12
), pp.
1237
1242
.
50.
Westwater
,
J. W.
, and
Santangelo
,
J. G.
, 1955, “
Photographic Study of Boiling
,”
Ind. Eng. Chem.
0019-7866,
47
(
8
), pp.
1605
1610
.
51.
Gaertner
,
R. F.
, 1965, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
0022-1481,
87
(
1
), pp.
17
29
.
52.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2002, “
Onset of Nucleate Boiling and Active Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
0022-1481,
124
(
4
), pp.
717
728
.
53.
Kulenovic
,
R.
,
Mertz
,
R.
, and
Groll
,
M.
, 2002, “
High Speed Flow Visualization of Pool Boiling From Structured Tubular Heat Transfer Surfaces
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
(
7
), pp.
547
555
.
54.
Zhang
,
J.
, and
Manglik
,
R. M.
, 2003, “
Visualization of Ebullient Dynamics in Aqueous Surfactant Solutions
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), p.
547
.
55.
Zhang
,
J.
, and
Manglik
,
R. M.
, 2004, “
Effect of Ethoxylation and Molecular Weight of Cationic Surfactants on Nucleate Boiling in Aqueous Solutions
,”
ASME J. Heat Transfer
0022-1481,
126
(
1
), pp.
34
42
.
56.
Zhang
,
J.
, and
Manglik
,
R. M.
, 2005, “
Nucleate Pool Boiling of Aqueous Polymer Solutions on a Cylindrical Heater
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
125
(
2–3
), pp.
185
196
.
57.
Chen
,
Y.
,
Groll
,
M.
,
Mertz
,
R.
, and
Kulenovic
,
R.
, 2005, “
Visualization and Mechanisms of Pool Boiling of Propane, Isubutane, and Their Mixtures on Enhanced Tubes With Reentrant Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
12
), pp.
2516
2528
.
58.
Siedel
,
S.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
, 2008, “
Experimental Analysis of Bubble Growth, Departure, and Interactions During Pool Boiling on Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
(
8
), pp.
1504
1511
.
59.
Nishikawa
,
K.
, 1987, “
Historical Developments in the Research of Boiling Heat Transfer
,”
JSME Int. J.
0913-185X,
30
(
264
), pp.
897
905
.
60.
Judd
,
R. L.
, and
Hwang
,
K. S.
, 1976, “
A Comprehensive Model for Nucleate Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
623
629
.
61.
Mikiç
,
B. B.
, and
Rohsenow
,
W. M.
, 1969, “
A New Correlation of Pool-Boiling Data Including Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
0022-1481,
9
(
2
), pp.
245
250
.
62.
Athavale
,
A.
, and
Manglik
,
R. M.
, 2009, “
Experiments in Pool Boiling From a Horizontal Cylindrical Heater in Water and Polymeric Aqueous Solutions
,” University of Cincinnati Report No. TFTPL-09-PR.
63.
Cooper
,
M. G.
, 1984, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Advances in Heat Transfer
, Vol.
16
,
J. P.
Hartnett
, and
T. F.
Irvines
, Jr.
, eds.,
Academic
,
New York
, pp.
157
239
.
64.
Cooper
,
M. G.
, 1984, “
Saturated Nucleate Pool Boiling—A Simple Correlation
,”
First UK National Conference on Heat Transfer
, Vol.
2
,
Institute of Chemical Engineers
,
University of Leeds, UK
, pp.
785
793
.
65.
Vachon
,
R. I.
,
Nix
,
G. H.
, and
Tanger
,
G. E.
, 1968, “
Evaluation of Constants for the Rohsenow Pool-Boiling Correlation
,”
ASME J. Heat Transfer
0022-1481,
90
(
2
), pp.
239
247
.
66.
Pioro
,
I. L.
, 1999, “
Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
11
), pp.
2003
2013
.
67.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
, 2004, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
23
), pp.
5033
5044
.
68.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
, 2004, “
Nucleate Pool-Boiling Heat Transfer. II: Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
23
), pp.
5045
5057
.
69.
Hahne
,
E.
, and
Barthau
,
G.
, 2006, “
Heat Transfer and Nucleation in Pool-Boiling
,”
Int. J. Therm. Sci.
1290-0729,
45
(
3
), pp.
209
216
.
70.
Danilova
,
G. N.
, and
Kupriyanova
,
A. V.
, 1970, “
Boiling Heat Transfer to Freons C318 and 21
,”
Heat Transfer-Sov. Res.
0440-5749,
2
(
2
), pp.
79
83
.
71.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1979, “
Heat Transfer in Nucleate Boiling of Freon
,”
Heat Transfer-Jpn. Res.
0096-0802,
8
(
3
), pp.
16
36
.
72.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1982, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Memoirs of the Faculty of Engineering, Kyushu University
0023-6160,
42
(
2
), pp.
95
123
.
73.
Marto
,
P. J.
,
Moulson
,
J. A.
, and
Maynard
,
M. D.
, 1968, “
Nucleate Pool Boiling of Nitrogen With Different Surface Conditions
,”
ASME J. Heat Transfer
0022-1481,
90
(
4
), pp.
437
444
.
74.
Singh
,
A.
,
Mikiç
,
B. B.
, and
Rohsenow
,
W. M.
, 1976, “
Active Sites in Boiling
,”
ASME J. Heat Transfer
0022-1481,
98
(
3
), pp.
401
406
.
75.
Fong
,
R. W. L.
,
McRae
,
G. A.
,
Coleman
,
C. E.
,
Nitheanandan
,
T.
, and
Sanderson
,
D. B.
, 2001, “
Correlation Between the Critical Heat Flux and the Fractal Surface Roughness of Zirconium Alloy Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
8
(
2
), pp.
137
146
.
76.
Tsujii
,
K.
, 1998,
Surface Activity
,
Academic
,
San Diego, CA
.
77.
Bergles
,
A. E.
, 1999, “
Enhanced Heat Transfer: Endless Frontier, or Mature and Routine?
,”
J. Enhanced Heat Transfer
1065-5131,
6
(
2–4
), pp.
79
88
.
78.
Bergles
,
A. E.
, 2001, “
The Implications and Challenges of Enhanced Heat Transfer for the Chemical Process Industries
,”
Chem. Eng. Res. Des.
0263-8762,
79
(
4
), pp.
437
444
.
79.
Manglik
,
R. M.
, and
Manglik
,
A.
, 2009, “
Energy Consumption, Economic Efficiency, and Fourth-Generation Technological Innovation for a Sustainable Future
,” Thermal-Fluids & Thermal Processing Laboratory Report No. TFTPL-EP-09, University of Cincinnati, Cincinnati, OH.
80.
Bergles
,
A. E.
, 2003, “
High-Flux Processes Through Enhanced Heat Transfer
,”
Rohsenow Symposium
, Massachusetts Institute of Technology, Cambridge, MA.
81.
Nakayama
,
W.
, and
Bergles
,
A. E.
, 1990, “
Cooling Electronic Equipment: Past, Present and Future
,”
Heat Transfer in Electronic and Microelectronic Equipment
,
A. E.
Bergles
, ed.,
Hemisphere
,
New York
, pp.
3
39
.
82.
Kandlikar
,
S. G.
, 2001, “
Critical Heat Flux in Subcooled Flow Boiling—An Assessment of Current Understanding and Future Directions for Research
,”
Multiphase Sci. Technol.
0276-1459,
13
(
3
), pp.
207
232
.
83.
Bergles
,
A. E.
, 1963, “
Subcooled Burnout in Tubes of Small Diameter
,”
ASME
Paper No. WAM 63-WA-182.
84.
Vandervort
,
C. L.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
, 1994, “
An Experimental Study of Critical Heat Flux in Very High Heat Flux Subcooled Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
161
173
.
85.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2002, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Advances in Heat Transfer
, Vol.
36
,
J. P.
Hartnett
,
T. F.
Irvine
, Jr.
,
Y. I.
Cho
, and
G. A.
Greene
, eds.,
Academic
,
San Diego, CA
, pp.
183
266
.
86.
Chang
,
S. H.
, and
Baek
,
W. -P.
, 2003, “
Understanding, Predicting, and Enhancing Critical Heat Flux
,”
Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10)
, Seoul, Korea, pp.
1
20
.
87.
Worthington
,
A. M.
, 1876, “
On the Forms Assumed by Drops of Liquid Falling Vertically on a Horizontal Plate
,”
Proc. R. Soc. London
0370-1662,
25
, pp.
261
272
.
88.
Worthington
,
A. M.
, 1877, “
A Second Paper on the Forms Assumed by Drops of Liquid Falling Vertically on a Horizontal Plate
,”
Proc. R. Soc. London
0370-1662,
25
, pp.
498
503
.
89.
Asai
,
A.
,
Shioya
,
M.
,
Hirasawa
,
S.
, and
Okazaki
,
T.
, 1993, “
Impact of an Ink Drop on Paper
,”
J. Imaging Sci. Technol.
1062-3701,
37
(
2
), pp.
205
207
.
90.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
, 2001, “
Outcomes From a Drop Impact on Solid Surfaces
,”
Atomization Sprays
1044-5110,
11
, pp.
155
165
.
91.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
, 2002, “
Time Evolution of Droplet Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
0723-4864,
33
, pp.
12
24
.
92.
Roisman
,
I. V.
,
Rioboo
,
R.
, and
Tropea
,
C.
, 2002, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. London
0370-1662,
A458
, pp.
1411
1430
.
93.
Gatne
,
K. P.
, 2006, “
Experimental Investigation of Droplet Impact Dynamics on Solid Surfaces
,” MS thesis, University of Cincinnati, Cincinnati, OH.
94.
Gatne
,
K. P.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 2007, “
Visualization of Fracture Dynamics of Droplet Recoil on Hydrophobic Surface
,”
ASME J. Heat Transfer
0022-1481,
129
(
8
), p.
931
.
95.
Gatne
,
K. P.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, 2009, “
Surfactant-Inducted Modification of Low Weber Number Droplet Impact Dynamics
,”
Langmuir
0743-7463,
25
(
14
), pp.
8122
8130
.
96.
Sikalo
,
S.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlic
,
S.
, and
Tropea
,
C.
, 2005, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
1070-6631,
17
(
6
), p.
062103
.
97.
Jones
,
H.
, 1971, “
Cooling, Freezing, and Substrate Impact of Drops Formed by Rotary Atomization
,”
J. Phys. D
0022-3727,
4
, pp.
1657
1660
.
98.
Madejski
,
J.
, 1976, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1009
1013
.
99.
Wang
,
G. X.
, and
Matthys
,
E. F.
, 1991, “
Modeling of Heat Transfer and Solidification During Splat Cooling: Effect of the Splat Thickness and Splat/Substrate Thermal Contact
,”
Int. J. Rapid Solidif.
0265-0916,
6
, pp.
141
174
.
100.
Bennett
,
T.
, and
Poulikakos
,
D.
, 1993, “
Splat-Quench Solidification: Estimating the Maximum Spreading of a Droplet Impacting a Solid Surface
,”
J. Mater. Sci.
0022-2461,
28
, pp.
963
970
.
101.
Zhao
,
Z.
, and
Poulikakos
,
D.
, 1996, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate—I. Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2771
2789
.
102.
Zhao
,
Z.
, and
Poulikakos
,
D.
, 1996, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate—II. Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2791
2802
.
103.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, 1997, “
Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
2
), pp.
247
267
.
104.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, 1997, “
Effects of Surface Roughness on Water Droplet Impact History and Heat Transfer Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
1
), pp.
73
88
.
105.
Ge
,
Y.
, and
Fan
,
L. S.
, 2006, “
3-D Modeling of the Dynamics and Heat Transfer Characteristics of Subcooled Droplet Impact on a Surface With Film Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4231
4249
.
106.
Mehdizadeh
,
N. Z.
, and
Chandra
,
S.
, 2006, “
Boiling During High-Velocity Impact of Water Droplets on a Hot Stainless Steel Surface
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
3115
3131
.
107.
Akhtar
,
S. W.
,
Nasr
,
G. G.
, and
Yule
,
A. J.
, 2007, “
Characteristics of Water Droplet Impaction Behavior on a Polished Steel Heated Surface—Part II
,”
Atomization Sprays
1044-5110,
17
, pp.
683
729
.
108.
Akhtar
,
S. W.
,
Nasr
,
G. G.
, and
Yule
,
A. J.
, 2007, “
Characteristics of Water Droplet Impaction Behavior on a Polished Steel Heated Surface—Part I
,”
Atomization Sprays
1044-5110,
17
, pp.
659
681
.
109.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
, 2007, “
A Numerical Investigation of the Evaporation Process of a Liquid Droplet Impinging Onto a Hot Substrate
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
303
319
.
110.
Lee
,
J.
,
Kim
,
J.
, and
Kiger
,
K. T.
, 2001, “
Time- and Space-Resolved Heat Transfer Characteristics of Single Droplet Cooling Using Microscale Heater Arrays
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
188
200
.
111.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2001, “
Cooling Effectiveness of a Water Drop Impinging on a Hot Surface
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
201
210
.
112.
Manzello
,
S. L.
, and
Yang
,
J. C.
, 2004, “
An Experimental Investigation of Water Droplet Impingement on a Heated Wax Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1701
1709
.
113.
Tarozzi
,
L.
,
Muscio
,
A.
, and
Tartarini
,
P.
, 2007, “
Experimental Tests of Dropwise Cooling on Infrared-Transparent Media
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
857
865
.
114.
Landero
,
J. C.
, and
Watkins
,
A. P.
, 2008, “
Modeling of Steady-State Heat Transfer in a Water Spray Impingement Onto a Heated Wall
,”
Atomization Sprays
1044-5110,
18
, pp.
1
47
.
115.
Fukai
,
J.
,
Shiiba
,
Y.
,
Yamamoto
,
T.
,
Miyatake
,
O.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Zhao
,
Z.
, 1995, “
Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and Modeling
,”
Phys. Fluids
1070-6631,
7
, pp.
236
247
.
116.
Gunjal
,
P. R.
,
Ranade
,
V. V.
, and
Chaudhari
,
R. V.
, 2005, “
Dynamics of Drop Impact on Solid Surfaces: Experiments and VOF Simulations
,”
AIChE J.
0001-1541,
51
(
1
), pp.
59
79
.
117.
Manservisi
,
S.
, and
Scardovelli
,
R.
, 2009, “
A Variational Approach to the Contact Angle Dynamics of Spreading Droplets
,”
Comput. Fluids
0045-7930,
38
, pp.
406
424
.
118.
Lunkad
,
S. F.
,
Buwa
,
V. V.
, and
Nigam
,
K. D. P.
, 2007, “
Numerical Simulations of Drop Impact and Spreading on Horizontal and Inclined Surfaces
,”
Chem. Eng. Sci.
0009-2509,
62
(
24
), pp.
7214
7224
.
119.
Sanjeev
,
A.
, 2008, “
Computational Study of Surfactant-Induced Modification of Droplet Impact Dynamics and Heat Transfer on Hydrophobic and Hydrophilic Surfaces
,” MS thesis, University of Cincinnati, Cincinnati, OH.
120.
Jiang
,
T.
,
Oh
,
S.
, and
Slattery
,
J. C.
, 1979, “
Correlation for Dynamic Contact Angle
,”
J. Colloid Interface Sci.
0021-9797,
69
, pp.
74
77
.
121.
Cox
,
R. G.
, 1986, “
The Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow
,”
J. Fluid Mech.
0022-1120,
168
, pp.
169
194
.
122.
Blake
,
T. D.
, 1993, “
Dynamic Contact Angles and Wetting Kinetics
,”
Wettability
,
J. C.
Berg
, ed.,
Marcel Dekker
,
New York
, pp.
251
310
.
123.
Blake
,
T. D.
,
Bracke
,
M.
, and
Shikhmurzaev
,
Y. D.
, 1999, “
Experimental Evidence of Nonlocal Hydrodynamic Influence on the Dynamic Contact Angle
,”
Phys. Fluids
1070-6631,
11
, pp.
1995
2007
.
124.
Martin-Callizo
,
C.
,
Palm
,
B.
,
Owhaib
,
W.
, and
Ali
,
R.
, 2010, “
Flow Boiling Visualization of R-134a in a Vertical Channel of Small Diameter
,”
ASME J. Heat Transfer
0022-1481,
132
, to be published.
125.
Fogg
,
D.
, and
Goodson
,
K. E.
, 2009, “
Bubble-Induced Water Hammer and Cavitation in Microchannel Flow Boiling
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121006
.
126.
Tanaka
,
F.
,
Hibishi
,
T.
, and
Mishima
,
K.
, 2009, “
Correlation for Flow Boiling Critical Heat Flux in Thin Rectangular Channels
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121003
.
127.
Kuo
,
C. J.
, and
Peles
,
Y.
, 2009, “
Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121011
.
128.
Nam
,
Y.
,
Wu
,
J.
,
Warrier
,
G.
, and
Ju
,
Y. S.
, 2009, “
Experimental and Numerical Study of Single Bubble Dynamics on a Hydrophobic Surface
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121004
.
129.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
, 2009, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121009
.
130.
Xu
,
J.
,
Zhang
,
Y.
, and
Ma
,
H.
, 2009, “
Effect of Internal Wick Structure on Liquid-Vapor Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121012
.
131.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
, 2009, “
Flow Boiling Heat Transfer in Horizontal Metal-Foam Tubes
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121002
.
132.
Wu
,
W.
,
Jones
,
B. G.
, and
Newell
,
T. A.
, 2009, “
A Statistical Model of Bubble Coalescence and Its Application to Boiling Heat Flux Prediction—Part I: Model Development
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121013
.
133.
Wu
,
W.
,
Jones
,
B. G.
, and
Newell
,
T. A.
, 2009, “
A Statistical Model of Bubble Coalescence and Its Application to Boiling Heat Flux Prediction—Part II: Experimental Validation
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121014
.
134.
Arias
,
F. J.
, 2009, “
Magnetohydrodynamic Correction in Film Boiling Heat Transfer on Liquid Metal in Presence of an Ideal Magnetic Field With Particular Reference to Fusion Reactor Project
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
124501
.
135.
Tipton
,
J. B.
, Jr.
,
Kihm
,
K. D.
, and
Pratt
,
D. M.
, 2009, “
Modeling Alkaline Liquid Metal (Na) Evaporating Thin Films Using Both Retarded Dispersion and Electronic Force Components
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121015
.
136.
Wagner
,
E.
, and
Stephan
,
P.
, 2009, “
High Resolution Measurements at Nucleate Boiling of Pure FC-84 and FC-3284 and Its Binary Mixtures
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121008
.
137.
Haustein
,
H. D.
,
Gany
,
A.
, and
Elias
,
E.
, 2009, “
Rapid Boiling of a Two-Phase Droplet in an Immiscible Liquid at High Superheat
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121010
.
138.
Hollingsworth
,
D. K.
,
Witte
,
L. C.
, and
Figueroa
,
M.
, 2009, “
Enhancement of Heat Transfer Behind Sliding Bubbles
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121005
.
139.
Sarkar
,
S.
, and
Selvam
,
R. P.
, 2009, “
Direct Numerical Simulation of Heat Transfer in Spray Cooling Through 3D Multiphase Flow Modeling Using Parallel Computing
,”
ASME J. Heat Transfer
0022-1481,
131
(
12
), p.
121007
.
140.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
, 2003, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
0363-907X,
27
(
2
), pp.
111
119
.
141.
Zhang
,
J.
, and
Manglik
,
R. M.
, 2005, “
Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
684
691
.
142.
Rioboo
,
R.
,
Marengo
,
M.
,
Dall’Olio
,
S.
,
Voue
,
M.
, and
De Coninck
,
J.
, 2009, “
An Innovative Method to Control the Incipient Flow Boiling Through Grafted Surfaces With Chemical Patterns
,”
Langmuir
0743-7463,
25
(
11
), pp.
6005
6009
.
143.
Choi
,
C. -H.
, and
Kim
,
C. -J.
, 2009, “
Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights
,”
Langmuir
0743-7463,
25
(
13
), pp.
7561
7567
.
144.
Chang
,
C. -H.
, and
Franses
,
E. I.
, 1995, “
Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms
,”
Colloids Surf., A
0927-7757,
100
, pp.
1
45
.
145.
Mourougou-Candoni
,
N.
,
Prunet-Foch
,
B.
,
Legay
,
F.
,
Vignes-Alder
,
M.
, and
Wong
,
K.
, 1997, “
Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting Onto a Low-Surface-Energy Solid Substrate
,”
J. Colloid Interface Sci.
0021-9797,
192
, pp.
129
141
.
146.
Zhang
,
X.
, and
Basaran
,
O. A.
, 1997, “
Dynamic Surface Tension Effects in Impact of a Drop With a Solid Surface
,”
J. Colloid Interface Sci.
0021-9797,
187
, pp.
166
178
.
147.
Bergeron
,
V.
,
Bonn
,
D.
,
Martin
,
J. Y.
, and
Vovelle
,
L.
, 2000, “
Controlling Droplet Deposition With Polymer Additives
,”
Nature (London)
0028-0836,
405
, pp.
772
775
.
148.
Crooks
,
R.
,
Cooper-White
,
J.
, and
Boger
,
D. V.
, 2001, “
The Role of Dynamic Surface Tension and Elasticity on the Dynamics of Drop Impact
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
5575
5592
.
149.
Bertola
,
V.
, 2004, “
Drop Impact on a Hot Surface: Effect of a Polymer Additive
,”
Exp. Fluids
0723-4864,
37
, pp.
653
664
.
150.
Cooper-White
,
J. J.
,
Crooks
,
R. C.
, and
Boger
,
D. V.
, 2002, “
A Drop Impact Study of Worm-Like Viscoelastic Surfactant Solutions
,”
Colloids Surf., A
0927-7757,
210
, pp.
105
123
.
151.
Lampe
,
J.
,
DiLalla
,
R.
,
Grimaldi
,
J.
, and
Rothstein
,
J. P.
, 2005, “
Impact Dynamics of Drops on Thin Films of Viscoelastic Wormlike Micelle Solutions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
125
, pp.
11
23
.
152.
Ariyo
,
A.
, 2009, “
Experimental Investigation of an Aqueous Polymer Solution Drop Impinging on a Solid Substrate
,” MS thesis, University of Cincinnati, Cincinnati, OH.
153.
Ariyo
,
A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, 2009, “
Droplet Impact Dynamics of Aqueous Polymeric Solutions
,”
Proceedings of the 11th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS 2009)
, Vail, CO, Paper No. ICLASS 2009-0066.
154.
Jung
,
Y. C.
, and
Bhushan
,
B.
, 2008, “
Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces
,”
Langmuir
0743-7463,
24
(
12
), pp.
6262
6269
.
155.
Patankar
,
N. A.
, 2004, “
Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars
,”
Langmuir
0743-7463,
20
(
19
), pp.
8209
8213
.
156.
Spori
,
D. M.
,
Drobek
,
T.
,
Zürcher
,
S.
,
Ochsner
,
M.
,
Sprecher
,
C.
,
Mühlebach
,
A.
, and
Spencer
,
N. D.
, 2008, “
Beyond the Lotus Effect: Roughness Influence on Wetting Over a Wide Surface-Energy Range
,”
Langmuir
0743-7463,
24
(
10
), pp.
5411
5417
.
157.
Zhang
,
J.
,
Sheng
,
X.
, and
Jiang
,
L.
, 2009, “
The Dewetting Properties of Lotus Leaves
,”
Langmuir
0743-7463,
25
(
3
), pp.
1371
1376
.
158.
Chen
,
H. -B.
,
Zhou
,
Y.
,
Yin
,
J.
,
Yan
,
J.
,
Ma
,
Y.
,
Wang
,
L.
,
Cao
,
Y.
,
Wang
,
J.
, and
Pei
,
J.
, 2009, “
Single Organic Microtwist With Tunable Pitch
,”
Langmuir
0743-7463,
25
(
10
), pp.
5459
5462
.
159.
Santayana
,
G.
, 1905,
The Life of Reason, or The Phases of Human Progress
, Vol.
1
,
C. Scribner’s Sons
,
New York
; 1998,
The Life of Reason, or The Phases of Human Progress
, republished by
Prometheus Books
,
Amherst, NY
.
160.
Bergles
,
A. E.
, 1981, “
Two-Phase Flow and Heat Transfer
,”
Heat Transfer Eng.
0145-7632,
2
(
3–4
), pp.
101
114
.
161.
Allchin
,
F. R.
, 1979, “
India: The Ancient Home of Distillation
?”
Man, New Series
,
14
(
1
), pp.
55
63
.
162.
Craddock
,
P. T.
, 1987, “
The Early History of Zinc
,”
Endeavour
0013-7162,
11
(
4
), pp.
183
191
.
163.
Despande
,
V.
, 1996, “
A Note on Ancient Zinc-Smelting in India and China
,”
Indian J. Hist. Sci.
,
31
(
3
), pp.
276
279
. 0019-5235
164.
Pothula
,
V. B.
,
Jones
,
T. M.
, and
Lesser
,
T. H. J.
, 2001, “
Otology in Ancient India
,”
J. Laryngol. Otol.
0022-2151,
115
, pp.
179
183
.
165.
Dwivedi
,
G.
, and
Dwivedi
,
S.
, 2007, “
Sushruta—The Clinician—Teacher par Excellence
,”
Indian J. Chest Dis. Allied Sci.
0377-9343,
49
(
4
), pp.
243
244
.
166.
Natarajan
,
K.
, 2008, “
Surgical Instruments and Endoscopes of Susruta, the Sage Surgeon of Ancient India
,”
Indian J. Surg.
,
70
(
5
), pp.
219
223
. 0019-5650
167.
Mahdihassan
,
S.
, 1979, “
Distillation Assembly of Pottery in Ancient India With a Single Item of Special Construction
,”
Vishveshvaranand Indological Journal
,
17
, pp.
264
266
.
168.
Mahdihassan
,
S.
, 1972, “
The Earliest Distillation Units of Pottery in Indo-Pakistan
,”
Pa. Archaeol.
,
8
, pp.
159
168
. 0031-4358
169.
Dani
,
A. H.
, 1966, “
Shaikhan Dheri Excavations, 1963 and 1964
,”
Ancient Pakistan
,
2
, pp.
17
214
.
170.
Marshall
,
J.
, 1951,
Taxila
,
Cambridge University Press
,
Cambridge, UK
.
171.
Oort
,
M. S.
, 2002, “
Sura in the Paippalada Samhita of the Atharvaveda
,”
J. Am. Orient. Soc.
,
122
(
2
), pp.
355
360
. 0003-0279
172.
Craddock
,
P. T.
,
Gurjar
,
L. K.
, and
Hegde
,
K. T. M.
, 1983, “
Zinc Production in Medieval India
,”
World Archaeol.
,
15
(
2
), pp.
211
217
. 0043-8243
173.
Willies
,
L.
,
Craddock
,
P. T.
,
Gurjar
,
L. J.
, and
Hegde
,
K. T. M.
, 1984, “
Ancient Lead and Zinc Mining in Rajasthan, India
,”
World Archaeol.
,
16
(
2
), pp.
222
233
. 0043-8243
You do not currently have access to this content.