Laser aided Directed Material Deposition (DMD) is an additive manufacturing process based on laser cladding. A full understanding of laser cladding is essential in order to achieve a steady state and robust DMD process. A two dimensional mathematical model of laser cladding with droplet injection was developed to understand the influence of fluid flow on the mixing, dilution depth, and deposition dimension, while incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool that is driven by thermal capillary convection and an energy balance at the liquid–vapor and the solid–liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was also studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated. The simulated results for average surface roughness were compared with the experimental data and showed a comparable trend.

1.
Mazumder
,
J.
, 1991, “
Overview of Melt Dynamics in Laser Processing
,”
Opt. Eng.
0091-3286,
30
, pp.
1208
1219
.
2.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
, and
Hetzner
,
D.
, 1997, “
The Direct Metal Deposition of H13 Tool Steel for 3D Components
,”
JOM
1047-4838,
49
, pp.
55
60
.
3.
Choi
,
J.
, 2002, “
Process and Properties Control In Laser Aided Direct Metal/Materials Deposition Process
,” 2002 ASME IMECE, IMECE2002-MED-33568, New Orleans, LA, Nov.
11
15
.
4.
Hua
,
Y.
, and
Choi
,
J.
, “
Feedback Control Effects on Dimensions and Defects of H13 Tool Steel by DMD Process
,” Paper No. 1308,
Proceedings of ICALEO 2003
, Jacksonville, FL, October 13–16, 2003.
5.
Weerasinghe
,
V. M.
, and
Steen
,
W. M.
, 1983, “
Computer Simulation Model for Laser Cladding
,” Transport phenomena in materials processing, PED
10
/HTD
29
, ASME, New York, NY, pp.
15
23
.
6.
Kar
,
A.
, and
Mazumder
,
J.
, 1987, “
One-dimensional Diffusion Model for Extended Solid Solution in Laser Cladding
,”
J. Appl. Phys.
0021-8979,
61
,
2645
2655
.
7.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
, 1992, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
0360-2141
23B
, pp.
631
642
.
8.
Picasso
,
M.
, and
Rappaz
,
M.
, 1994, “
Laser-Powder-Material Interactions in the Laser Cladding Process
,”
J. Phys. IV
1155-4339,
C4
, pp.
27
33
.
9.
Jouvard
,
J-.M.
,
Grevey
,
D. F.
,
Lemoine
,
F.
, and
Vannes
,
A. B.
, 1997, “
Continuous Wave Nd:YAG Laser Cladding Modeling: A Physical Study of Track Creation during Low Power Processing
,”
J. Laser Appl.
1042-346X,
9
, pp.
43
50
.
10.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
, 2003, “
Three-Dimensional Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Powder Feedrate and Travel Speed on the Process
,”
J. Laser Appl.
1042-346X,
15
, pp.
153
160
.
11.
Bennon
,
W.
, and
Incropera
,
F.
, 1987, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems - I. Model Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
2161
2170
.
12.
Prankash
,
C.
, and
Voller
,
V.
, 1989, “
On the Numerical Solution of Continuum Mixture Model Equations Describing Binary Solid-Liquid Phase Change
,”
Numer. Heat Transfer, Part B
1040-7790,
15
, pp.
171
189
.
13.
Nichols
,
B. D.
,
Hirt
,
C. W.
, and
Hotchkiss
,
R. S.
, 1980, “
SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries
,” LA-8355, Los Alamos National Laboratory.
14.
Kothe
,
D. B.
,
Mjolsness
,
R. C.
, and
Torrey
,
M. D.
, 1991, “
Ripple: A Computer Program for Incompressible Flows with Free Surfaces
,” LA-12007-MS, Los Alamos National Laboratory.
15.
Carman
,
P. C.
, 1937, “
Fluid Flow through Granular Beds
,”
Trans. Inst. Chem. Eng.
0371-7496,
15
, pp.
150
166
.
16.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Impingement of Filler Droplets and Weld Pool Dynamics during Gas Metal Arc Welding Process
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2067
2080
.
17.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
, Hemisphere, New York.
18.
Sasmal
,
G. P.
, and
Hochstein
,
J. I.
, 1994, “
Marangoni Convection with a Curved and Deforming Free Surface in a Cavity
,”
J. Fluids Eng.
0098-2202,
116
, pp.
577
582
.
19.
Bell
,
J. B.
,
Colella
,
P.
, and
Glas
,
H. M.
, 1989, “
A Second-Order Projection Method for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
85
, pp.
257
283
.
20.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
21.
Li
,
L. J.
, and
Mazumder
,
J.
, 1985, in
Proceedings of Laser Processing of Materials
, edited by
K.
Mukherjee
, and
J.
Mazumder
(
Metallurgical Society of American Institute of Metallurgical Engineers
, Warrendale, PA, 1985), pp.
35
50
.
22.
Gedda
,
E.
,
Powel
,
J.
,
Wahlstöm
,
G.
,
Li
,
W.-B.
,
Engström
,
H
, and
Magnusson
,
C.
, 2002, “
Energy Redistribution during CO2 Laser Cladding
,”
J. Laser Appl.
1042-346X,
14
, pp.
78
82
.
23.
Dushman
,
S
, 1962,
Scientific Foundation of Vacuum Technology
(
John Wiley
, New York.
24.
Kim
,
C. S.
, 1975, “
Thermophysical Properties of Stainless Steels
,” Argonne National Laboratory, Argonne, IL, Report No. ANL-75-55.
25.
Lin
,
J.
, and
Steen
,
W.
, 1998, “
Design Characteristics and Development of a Nozzle for Coaxial Laser Cladding
,”
J. Laser Appl.
1042-346X,
10
, pp.
55
63
.
26.
Lin
,
J.
, 2000, “
Laser Attenuation of the Focused Powder Streams in Coaxial Laser Cladding
,”
J. Laser Appl.
1042-346X,
12
, pp.
28
33
.
27.
Mazumder
,
J.
,
Schifferer
,
A.
, and
Choi
,
J.
, 1999, “
Direct Materials Deposition: Designed Macro and Microstructure
,”
Mater. Res. Innovations
1432-8917,
3
, pp.
118
131
.
You do not currently have access to this content.