Superadiabatic combustion in porous media allows a stable burning of ultralean methane/air mixtures, far below flammability limits. The intrinsic heat regeneration process of the porous matrix and the low degree of thermal nonequilibrium between the gas and the solid phases maintain temperatures of less than 1600 K resulting in extremely low levels of CO and NOx production. Due to the transient nature of this phenomenon, a method to confine the combustion into a practical burner has been engineered. The Reciprocal Flow Burner (RFB) is an effective and simple system to achieve this result by arranging the reaction zone to travel back and forth along the length of the burner. This ultimately results in a relatively uniform temperature profile over the central zone of the reactor. Embedding heat exchangers into the ends of the bed makes it an appealing alternative for high-efficiency, low-emission heat generation. In the present work, experimental results are presented and compared to an earlier numerical model to provide a better understanding of heat extraction from a RFB.

1.
Babkin
,
V. S.
,
1993
, “
Filtration Combustion of Gases, Present State of Affairs and Prospects
,”
Pure Appl. Chem.
,
65
, pp.
335
344
.
2.
Laevskii, Yu. M., and Babkin, V. S., 1982, “Filtration Combustion of Gases,” in Propagation of Heat Waves in Heterogeneous Media, Yu. Matros, Ed., Nauka, Novosibirsk, pp. 108–145.
3.
Zhdanok
,
S. A.
,
Kennedy
,
L. A.
, and
Koester
,
G.
,
1995
, “
Superadiabatic Combustion of Methane Air Mixtures Under Filtration in Packed Bed
,”
Combust. Flame
,
100
, pp.
221
231
.
4.
Bingue, J. P., Saveliev, A. V., Fridman, A. A., and Kennedy, L. A., 1998, “NOx and CO Emissions of Lean and Ultra-Lean Filtration Combustion of Methane/Air Mixtures in Inert Porous Media,” Proc. 5th International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, pp. 1361–1367.
5.
Kennedy
,
L. A.
,
Fridman
,
A. A.
, and
Saveliev
,
A. V.
,
1995
, “
Superadiabatic Combustion in Porous Media: Wave Propagation, Instabilities, New Type of Chemical Reactor
,”
Fluid Mech. Res.
,
22
, pp.
1
26
.
6.
Bingue
,
J. P.
,
Saveliev
,
A. V.
,
Fridman
,
A. A.
, and
Kennedy
,
L. A.
,
2002
, “
Hydrogen Production in Ultra-Rich Filtration Combustion of Methane and Hydrogen Sulfide
,”
Int. J. Hydrogen Res.
,
27/6
,
643
649
.
7.
Bingue
,
J. P.
,
Saveliev
,
A. V.
,
Fridman
,
A. A.
, and
Kennedy
,
L. A.
,
2002
, “
Hydrogen Sulfide Filtration Combustion: Comparison of Theory and Experiments
,”
J. Exp Ther. Fluid Sci.
,
26
,
409
415
.
8.
Slimane, R. B., Lau, F. S., Bingue, J. P., Saveliev, A. V., Fridman, A. A., and Kennedy, L. A., 2002, “Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide,” Proc. 14th World Hydrogen Energy Conference.
9.
Kennedy, L. A., Saveliev, A. V., Binque, J. P., and Fridman, A. A., 2003, “Filtration Combustion of a Methane Wave in Air for Oxygen Enriched and Depleted Environments,” Proc. The Combustion Institute, pp. 1835–1842.
10.
Drayton, M. K., Saveliev, A. V., Kennedy, L. A., and Fridman, A. A., 1998, “Syngas Production Using Superadiabatic Combustion of Ultra-Rich Methane–Air Mixtures,” Proc. Combust. Inst., Vol. 27, pp. 1361–1367.
11.
Mohamad
,
A. A.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1994
, “
Numerical Predictions of Combustion and Heat Transfer in a Packed Bed With Embedded Coolant Tubes
,”
Combust. Sci. Technol.
,
96
, pp.
387
407
.
12.
Rumminger, M. D., Dibbie, R. W., Heberle, N. H., and Crosley, D. R., 1996, “Gas Temperature Above a Radiant Porous Burner: Comparison of Measurements and Model Predictions,” Proc. Combust. Inst., 26, pp. 1755–1762.
13.
Tong
,
T. W.
, and
Sathe
,
S. B.
,
1991
, “
Heat Transfer Characteristics of Porous Radiant Burners
,”
ASME J. Heat Transfer
,
113
, pp.
387
407
.
14.
Xiong
,
T. Y.
,
Khinkis
,
M. J.
, and
Fish
,
F. F.
,
1995
, “
Experimental Study of a High-Efficiency, Low Emission Porous Matrix Combustor-Heater
,”
Fuel
,
74
, pp.
1641
1647
.
15.
Xuan
,
Y.
, and
Viskanta
,
R.
,
1999
, “
Numerical Investigation of a Porous Matrix Combustor-Heater
,”
Numer. Heat Transfer, Part A
,
36
, pp.
359
374
.
16.
Hannamura
,
K.
,
Echigo
,
R.
, and
Zhdanok
,
S.
,
1993
, “
Superadiabatic Combustion in Porous Media
,”
Int. J. Heat Mass Transfer
,
36
, pp.
3201
3209
.
17.
Kennedy, L. A., Saveliev, A. V., and Fridman, A. A., 1995, “Transient Filtration Combustion,” Proc. Mediterranean Combustion Symposium, Antalya, Turkey, pp. 105–138.
18.
Contarin
,
F.
,
Saveliev
,
A. V.
,
Fridman
,
A. A.
, and
Kennedy
,
L. A.
,
2003
, “
A Reciprocal Flow Filtration Combustor With Embedded Heat Exchangers: Numerical Study
,”
Int. J. Heat Mass Transfer
,
36
, pp.
949
961
.
19.
Contarin, F., Barcellos, W. B., Saveliev, A. V., and Kennedy, L. A., 2003, “A Porous Media Reciprocal Flow Burner With Embedded Heat Exchanger,” Proc. ASME Summer Heat Transfer Conf., Paper No. HT2003-47098.
You do not currently have access to this content.