Controlled heating of nanoparticles is a key enabling technology for various nanomanufacturing and biomedical applications. A theoretical study of energy transport in nanoparticles is conducted to elucidate the role of electron-phonon spatial nonequilibrium in heat conduction across metal-dielectric interfaces. The continuum two-temperature heat conduction model is shown to capture the apparent size dependence of the thermal interface resistance of Au nanoparticle suspensions. Consideration of coupling between electrons and atomic vibrations is important in understanding energy transport in nanoscale metallic structures suspended in a dielectric medium.
Issue Section:
Technical Briefs
1.
Kurita
, H.
, Takami
, A.
, and Koda
, S.
, 1998, “Size Reduction of Gold Particles in Aqueous Solutions by Pulsed Laser Irradiation
,” Appl. Phys. Lett.
0003-6951, 72
, pp. 789
–791
.2.
Hamad-Schifferli
, K.
, Schwartz
, J. J.
, Santos
, A. T.
, Zhang
, S.
, and Jacobson
, J. M.
, 2002, “Remote Electronic Control of DNA Hybridization through Inductive Coupling to an Attached Metal Nanocrystal Antenna
,” Nature (London)
0028-0836, 415
, pp. 152
–155
.3.
Eastman
, J. A.
, Choi
, S. U. S.
, Li
, S.
, Yu
, W.
, and Thompson
, L. J.
, 2001, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,” Appl. Phys. Lett.
0003-6951, 78
, pp. 718
–720
.4.
Link
, S.
, and El-Sayed
, M. A.
, 2003, “Optical Properties and Ultra-Fast Dynamics of Metallic Nanocrystals
,” Annu. Rev. Phys. Chem.
0066-426X, 54
, pp. 331
–366
.5.
Hu
, M.
, and Hartland
, G. V.
, 2002, “Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time Versus Size
,” J. Phys. Chem. B
1089-5647, 106
(28
), pp. 7029
–7033
.6.
Wilson
, O. M.
, Hu
, X. Y.
, Cahill
, D. G.
, and Braun
, P. V.
, 2002, “Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,” Phys. Rev. B
0163-1829, 66
, p. 224301
.7.
Swartz
, E. T.
, and Pohl
, R. O.
, 1989, “Thermal-Boundary Resistance
,” Rev. Mod. Phys.
0034-6861, 61
(3
), pp. 605
–668
.8.
Yu
, C. J.
, Richter
, A. G.
, Datta
, A.
, Durbin
, M. K.
, and Dutta
, P.
, 2000, “Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study
,” Physica B
0921-4526, 283
, pp. 27
–31
.9.
Xue
, L.
, Keblinski
, P.
, Philpot
, S. R.
, Choi
, S. U. S.
, and Eastman
, J. A.
, 2003, “Two Regimes of Thermal Resistance at a Liquid-Solid Interface
,” J. Chem. Phys.
0021-9606, 118
, pp. 337
–339
.10.
Anisimov
, S. I.
, Kapeliovich
, B. L.
, and Perelman
, T. L.
, 1974, “Emission of Electrons From the Surface of Metals Induced by Ultrashort Laser Pulses
,” Zh. Eksp. Teor. Fiz.
0044-4510, 66
(2
), pp. 776
–81
.11.
Majumar
, A.
, and Reddy
, P.
, 2004, “Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces
,” Appl. Phys. Lett.
0003-6951, 84
, pp. 4768
–4770
.12.
Hostetler
, J. L.
, Smith
, A. N.
, Czajkowsky
, D. M.
, and Norris
, P. M.
, 1999, “Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,” Appl. Opt.
0003-6935, 38
(16
), pp. 3614
–3620
.13.
Averitt
, R. D.
, Westcott
, S. L.
, and Halas
, N. J.
, 1998, “Ultrafast Electron Dynamics in Gold Nanoshells
,” Phys. Rev. B
0163-1829, 58
(16
), pp. R10203
–R10206
.14.
Qiu
, T. Q.
, and Tien
, C. L.
, 1993, “Size Effects on Nonequilibrium Laser-Heating of Metal-Films
,” ASME J. Heat Transfer
0022-1481, 115
(4
), pp. 842
–847
.15.
Berman
, R.
, 1976, Thermal Conduction in Solids
, Clarendon Press
, Oxford.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.