Controlled heating of nanoparticles is a key enabling technology for various nanomanufacturing and biomedical applications. A theoretical study of energy transport in nanoparticles is conducted to elucidate the role of electron-phonon spatial nonequilibrium in heat conduction across metal-dielectric interfaces. The continuum two-temperature heat conduction model is shown to capture the apparent size dependence of the thermal interface resistance of Au nanoparticle suspensions. Consideration of coupling between electrons and atomic vibrations is important in understanding energy transport in nanoscale metallic structures suspended in a dielectric medium.

1.
Kurita
,
H.
,
Takami
,
A.
, and
Koda
,
S.
, 1998, “
Size Reduction of Gold Particles in Aqueous Solutions by Pulsed Laser Irradiation
,”
Appl. Phys. Lett.
0003-6951,
72
, pp.
789
791
.
2.
Hamad-Schifferli
,
K.
,
Schwartz
,
J. J.
,
Santos
,
A. T.
,
Zhang
,
S.
, and
Jacobson
,
J. M.
, 2002, “
Remote Electronic Control of DNA Hybridization through Inductive Coupling to an Attached Metal Nanocrystal Antenna
,”
Nature (London)
0028-0836,
415
, pp.
152
155
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
4.
Link
,
S.
, and
El-Sayed
,
M. A.
, 2003, “
Optical Properties and Ultra-Fast Dynamics of Metallic Nanocrystals
,”
Annu. Rev. Phys. Chem.
0066-426X,
54
, pp.
331
366
.
5.
Hu
,
M.
, and
Hartland
,
G. V.
, 2002, “
Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time Versus Size
,”
J. Phys. Chem. B
1089-5647,
106
(
28
), pp.
7029
7033
.
6.
Wilson
,
O. M.
,
Hu
,
X. Y.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
0163-1829,
66
, p.
224301
.
7.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal-Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
(
3
), pp.
605
668
.
8.
Yu
,
C. J.
,
Richter
,
A. G.
,
Datta
,
A.
,
Durbin
,
M. K.
, and
Dutta
,
P.
, 2000, “
Molecular Layering in a Liquid on a Solid Substrate: An X-Ray Reflectivity Study
,”
Physica B
0921-4526,
283
, pp.
27
31
.
9.
Xue
,
L.
,
Keblinski
,
P.
,
Philpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2003, “
Two Regimes of Thermal Resistance at a Liquid-Solid Interface
,”
J. Chem. Phys.
0021-9606,
118
, pp.
337
339
.
10.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perelman
,
T. L.
, 1974, “
Emission of Electrons From the Surface of Metals Induced by Ultrashort Laser Pulses
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
66
(
2
), pp.
776
81
.
11.
Majumar
,
A.
, and
Reddy
,
P.
, 2004, “
Role of Electron-Phonon Coupling in Thermal Conductance of Metal-Nonmetal Interfaces
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4768
4770
.
12.
Hostetler
,
J. L.
,
Smith
,
A. N.
,
Czajkowsky
,
D. M.
, and
Norris
,
P. M.
, 1999, “
Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,”
Appl. Opt.
0003-6935,
38
(
16
), pp.
3614
3620
.
13.
Averitt
,
R. D.
,
Westcott
,
S. L.
, and
Halas
,
N. J.
, 1998, “
Ultrafast Electron Dynamics in Gold Nanoshells
,”
Phys. Rev. B
0163-1829,
58
(
16
), pp.
R10203
R10206
.
14.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Size Effects on Nonequilibrium Laser-Heating of Metal-Films
,”
ASME J. Heat Transfer
0022-1481,
115
(
4
), pp.
842
847
.
15.
Berman
,
R.
, 1976,
Thermal Conduction in Solids
,
Clarendon Press
, Oxford.
You do not currently have access to this content.