In the present study the optimum dimensions of longitudinal rectangular and triangular radiating fins with mutual irradiation are determined. The basic assumptions are one-dimensional heat conduction and gray diffuse surface radiation. The governing equations are formulated by means of dimensionless variables and solved numerically in order to carry out the required minimization procedure. The optimum fin dimensions, thickness and height, are presented in generalized dimensionless form and correlations are provided in order to assist the spacecraft thermal systems designer. The results are analyzed and expressed in explicit correlations. Several diagrams, are also included, that give insight to the operational characteristics of the heat rejection mechanism. Moreover, special attention is given to the error analysis of the numerical methods used, since the accuracy and the reliability of the algorithms employed for the solution of the integro-differential equation is important for the calculation of the heat dissipation at the fin base and its subsequent optimization.

1.
Bartas
,
J. G.
, and
Sellers
,
W. H.
,
1960
, “
Radiation Fin Effectiveness
,”
ASME J. Heat Transfer
,
82
, pp.
73
75
.
2.
Kern, D. Q., and Kraus, A. D., 1972, Extended Surface Heat Transfer, McGraw-Hill, New York.
3.
Liu
,
C. Y.
,
1960
, “
On Minimum Weight Rectangular Radiating Fins
,”
J. Aerosp. Sci.
,
27
, p.
871
871
.
4.
Liu
,
C. Y.
,
1961
, “
On Optimum Rectangular Cooling Fins
,”
Q. Appl. Math.
,
19
, p.
72
72
.
5.
Wilkins
,
J. E.
, Jr.
,
1960
, “
Minimizing the Mass of Thin Radiating Fins
,”
J. Aerosp. Sci.
,
27
, pp.
145
145
.
6.
Chung, B. T. F., and Nguyen, L. D., 1986, “Optimization of Design Parameters for Radiating Longitudinal Fins of Various Geometries,” 24th AIAA Aerospace Sciences Meeting, Reno, NV, Paper AIAA-86-0150.
7.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Minimum Mass Longitudinal Fins with Radiation Interaction at the Base
,”
J. Franklin Inst.
328
(
1
), pp.
143
161
.
8.
Chung
,
B. T. F.
, and
Zhang
,
B. X.
,
1991
, “
Optimization of Radiating Fin Array Including Mutual Irradiations Between Radiator Elements
,”
ASME J. Heat Transfer
,
113
, pp.
814
822
.
9.
Chung
,
B. T. F.
,
Zhang
,
B. X.
, and
Lee
,
E. T.
,
1996
, “
A Multi-Objective Optimization of Radiative Fin Array Systems in a Fuzzy Environment
,”
ASME J. Heat Transfer
,
118
, pp.
642
649
.
10.
Krishnaprakas
,
C. K.
,
1996
, “
Optimum Design of Radiating Rectangular Plate Fin Array Extending From a Plane Wall
,”
ASME J. Heat Transfer
,
118
, pp.
490
493
.
11.
Krishnaprakas
,
C. K.
,
1997
, “
Optimum Design of Radiating Longitudinal Fin Array Extending From a Cylindrical Surface
,”
ASME J. Heat Transfer
,
119
, pp.
857
860
.
12.
Sunil
,
Kumar S.
,
Venketesh
,
Nayak
, and
Venkateshan
,
S. P.
,
1992
, “
Optimum Finned Space Radiators
,”
Int. J. Heat Fluid Flow
,
14
(
2
), pp.
191
200
.
13.
Ramesh
,
N.
, and
Venkateshan
,
S. P.
,
1997
, “
Optimum Finned Tubular Space Radiator
,”
Heat Transfer Eng.
,
18
(
4
), pp.
69
87
.
14.
Schnurr
,
E. M.
,
Shapiro
,
A. B.
, and
Townsend
,
M. A.
,
1976
, “
Optimization of Radiating Fin Arrays With Respect to Weight
,”
ASME J. Heat Transfer
,
98
, pp.
643
648
.
15.
Aziz
,
A.
, and
Kraus
,
A. D.
,
1996
, “
Optimum Design of Radiating and Convective-Radiating Fins
,”
Heat Transfer Eng.
,
17
(
3
), pp.
44
78
.
16.
Razelos
,
P.
, and
Krikkis
,
R. N.
,
2001
, “
Optimum Design of Longitudinal Rectangular Fins with Base to Fin Radiant Interaction
,”
Heat Transfer Eng.
,
22
(
3
), pp.
3
17
.
17.
Razelos
,
P.
, and
Georgiou
,
E.
,
1992
, “
Two-Dimensional Effects and Design Criteria for Convective Extended Surfaces
,”
Heat Transfer Eng.
,
13
(
3
), pp.
38
48
.
18.
Sparrow
,
E. M.
,
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
, Jr.
,
1961
, “
The Effectiveness of Radiating Fins with Mutual Irradiation
,”
J. Aerosp. Sci.
,
28
, pp.
763
778
.
19.
Karlekar
,
B. V.
, and
Chao
,
B. T.
,
1963
, “
Mass Minimization of Radiating Trapezoidal Fins with Negligible Base Cylinder Interaction
,”
Int. J. Heat Mass Transf.
,
6
, pp.
33
48
.
20.
Razelos
,
P.
, and
Imre
,
K.
,
1980
, “
The Optimum Dimensions of Circular Fins with Variable Thermal Parameters
,”
ASME J. Heat Transfer
,
102
, pp.
420
425
.
21.
IMSL, Inc., 1991, IMSL Library Reference Manual, Houston, TX.
22.
Razelos
,
P.
,
1979
, “
The Optimization of Convective Fins with Internal Heat Generation
,”
Nucl. Eng. Des.
,
52
(
2
), pp.
289
299
.
23.
Razelos
,
P.
, and
Kakatsios
,
X. K.
,
2000
, “
Optimum Dimensions of Convective-Radiating Fins: Part I—Longitudinal Fins
,”
Appl. Therm. Eng.
,
20
(
13
), pp.
1161
1192
.
24.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
25.
Ascher, U. M., Mattheij, R. M. M., and Russel, R. D., 1995, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, 2nd ed., SIAM, Philadelphia, PA.
26.
Keller, H. B., 1992, Numerical Methods for Two-Point Boundary-Value Problems, Dover, New York.
27.
Papakostas, S. N., Tsitouras, Ch., and Papageorgiou, G., 1993, “A General Family of Explicit Runge-Kutta Pairs of Order 6 and 5,” National Technical University of Athens, Report NA-1/93.
28.
Tsitouras
,
Ch.
, and
Papageorgiou
,
G.
,
1990
, “
Runge-Kutta Interpolants Based on Values from Two Successive Integration Steps
,”
Computing
,
43
, pp.
255
266
.
29.
Shampine
,
L. F.
,
1973
, “
Local Extrapolation in the Solution of Ordinary Differential Equations
,”
Math. Comput.
,
27
, pp.
91
97
.
30.
Atkinson, K. E., 1976, ACM TOMS, Vol. 2, pp. 196–199.
31.
Atkinson, K. E., 1997, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, New York.
32.
Kraus, A. D., Aziz, A., and Welty, J., 2001, Extended Surface Heat Transfer, John Wiley, New York.
You do not currently have access to this content.