Field-effect transistors (FETs) in conventional electronic circuits are in contact with the high-thermal-conductivity substrate. In contrast, FETs in novel silicon-on-insulator (SOI) circuits are separated from the substrate by a thermally resistive silicon-dioxide layer. The layer improves the electrical performance of SOI circuits. But it impedes conduction cooling of transistors and interconnects, degrading circuit reliability. This work develops a technique for measuring the channel temperature of SOI FETs. Data agree well with the predictions of an analytical thermal model. The channel and interconnect temperatures depend strongly on the device and silicon-dioxide layer thicknesses and the channel–interconnect separation. This research facilitates the thermal design of SOI FETs to improve circuit figures of merit, e.g., the median time to failure (MTF) of FET–interconnect contacts.

1.
Black, J. R., 1967, “Mass Transport of Aluminium by Momentum Exchange With Conducting Electrons,” Proceedings of the IEEE Reliability Physics Symposium, pp. 148–159.
2.
Brotzen
F. R.
,
Loos
P. J.
, and
Brady
D. P.
,
1992
, “
Thermal Conductivity of Thin SiO2 Films
,”
Thin Solid Films
, Vol.
207
, pp.
19
7201
.
3.
Brugger, H., 1991, “Raman Spectroscopy for Characterization of Lasered Semiconductor Materials and Devices,” in: Light Scattering in Semiconductor Structures and Superlattices, K. J. Lockwood and J. F. Young, eds., Plenum, New York, pp. 259–274.
4.
Bunyan
R. J. T.
,
Uren
M. J.
,
Alderman
J. C.
, and
Eccleston
W.
,
1992
, “
Use of Noise Thermometry to Study the Effects of Self-Heating in Submicrometer SOI MOSFET’s
,”
IEEE Electron Device Letters
, Vol.
13
, pp.
279
281
.
5.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, New York, pp. 214–216.
6.
Chern
J. G. J.
,
Oldham
W. G.
, and
Cheung
N.
,
1986
, “
Electromigration in AI/Si Contacts—Induced Open-Circuit Failure
,”
IEEE Transactions on Electron Devices
, Vol.
ED-33
, pp.
1256
1262
.
7.
Colinge, J. P., 1991, Silicon-on-Insulator Technology: Materials to VLSI, Kluwer Academic Publishers, Boston, pp. 1–5.
8.
Fushinobu, K., and Majumdar, A., 1993, “Heat Generation and Transport in Submicron Semiconductor Devices,” in: Heat Transfer on the Microscale, ASME HTD-Vol. 253, F. M. Gerner and K. S. Udell, eds., pp. 21–28.
9.
Goodson
K. E.
, and
Flik
M. I.
,
1992
, “
Effect of Microscale Heat Conduction on the Packing Limit of Silicon-on-Insulator Electronic Devices
,”
IEEE Trans. on Components, Hybrids, and Manufacturing Technology
, Vol.
15
, pp.
715
722
.
10.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1993
, “
Annealing-Temperature Dependence of the Thermal Conductivity of CVD Silicon-Dioxide Layers
,”
IEEE Electron Device Letters
, Vol.
14
, pp.
490
492
.
11.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniadis
D. A.
,
1994
, “
Prediction and Measurements of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
317
323
.
12.
Holman, J. P., 1984, Experiments Methods for Engineers, McGraw-Hill, New York, pp. 50–57.
13.
Kittel, C., 1986, Introduction to Solid State Physics, Wiley, New York.
14.
Lai, J., Carrejo, J. P., and Majumdar, A., 1993, “Thermal Imaging and Analysis at Sub-micrometer Scales using the Atomic Force Microscope,” in: Heat Transfer on the Microscale, ASME HTD-Vol. 253, F. M. Gerner and K. S. Udell, eds., pp. 13–20.
15.
Lifka, H., and Woerlee, P. H., 1990, “Thin Simox SOI Material for Half-Micron CMOS,” Proceedings of the European Solid State Device Research Conference, pp. 453–456.
16.
Majumdar
A.
,
Carrejo
P.
, and
Lai
J.
,
1993
, “
Thermal Imaging Using the Atomic Force Microscope
,”
Appl. Phys. Lett.
, Vol.
62
, pp.
2501
2503
.
17.
Marcus, R. B., and Sheng, T. T., 1983, Transmission Electron Microscopy of Silicon VLSI Circuits and Structures, Wiley, New York, pp. 80–82.
18.
Mastrangelo
C. H.
, and
Muller
R. S.
,
1988
, “
Thermal Diffusivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
Sensors and Materials
, Vol.
3
, pp.
133
142
.
19.
Mautry, P. G., and Trager, J., 1990, “Self-Heating and Temperature Measurement in Sub-μm-MOSFETs,” Proceeding of the IEEE International Conference on Microelectronic Test Structures, Vol. 3, pp. 221–226.
20.
McDaid
L. J.
,
Hall
S.
,
Mellor
P. H.
,
Eccleston
W.
, and
Alderman
J. C.
,
1989
, “
Physical Origin of the Negative Differential Resistance in SOI Transistors
,”
Electronics Lett.
, Vol.
25
, pp.
827
828
.
21.
Ostermeier
R.
,
Brunner
K.
,
Abstreiter
G.
, and
Weber
W.
,
1992
, “
Temperature Distribution in Si-MOSFET’s Studied by Micro Raman Spectroscopy
,”
IEEE Trans. Electron Devices
, Vol.
39
, pp.
858
863
.
22.
Rohsenow, W. M., and Choi, H. Y., 1961, Heat, Mass, and Momentum Transfer, Prentice-Hall, Englewood Cliffs, NJ, p. 155.
23.
Rowe
D. M.
, and
Bhandari
C. M.
,
1986
, “
Preparation and Thermal Conductivity of Doped Semiconductors
,”
Progress in Crystal Growth and Characterization
, Vol.
13
, pp.
233
289
.
24.
Schafft, H. A., Suchle, J. S., and Mirel, P. G. A., 1989, “Thermal Conductivity Measurements of Thin-Film Silicon Dioxide,” Proceedings of the IEEE International Conference on Microelectronic Test Structures, Vol. 2, pp. 121–124.
25.
Sugawara
A.
,
1969
, “
Precise Determination of Thermal Conductivity of High Purity Fused Quartz from 0° to 650°C
,”
Physica
, Vol.
41
, pp.
515
520
.
26.
Tai
Y. C.
,
Mastrangelo
C. H.
, and
Muller
R. S.
,
1988
, “
Thermal Conductivity of Heavily-Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
, Vol.
63
, pp.
1442
1447
.
27.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, “Thermal Conductivity: Metallic Elements and Alloys,” in: Thermophysical Properties of Matter, Vol. 1, IFI/Plenum, New York, pp. 9, 326, 330, and 335.
28.
Vo¨lklein
F.
, and
Baltes
X. X.
,
1992
, “
A Microstructure for Measurements of Thermal Conductivity of Polysilicon Thin Films
,”
J. Microelectromechanical Systems
, Vol.
1
, pp.
193
196
.
29.
Woerlee, P. H., van Ommen, A. H., Lifka, H., Juffermans, C. A. H., Plaja, L., and Klaassen, F. M., 1989, “Half-Micron CMOS on Ultra-Thin Silicon on Insulator,” Proceedings of the IEEE International Electron Devices Meeting, pp. 821–824.
This content is only available via PDF.
You do not currently have access to this content.