Abstract

Ammonia (NH3) is a promising carbon-free fuel candidate to replace conventional petroleum-based fuels. However, NH3 has low flame speed, low calorific value, narrow flammability limits, and requires high ignition energy. As a result, the use of NH3 in power applications such as internal combustion (IC) engines may require a secondary fuel to promote and sustain the flame as well as hardware engine modifications such as a higher compression ratio (CR) and a high-energy ignition coil. This work investigated the use of a dual-fuel approach involving NH3 and natural gas (NG) components (i.e., methane, propane, and ethane) in a single-cylinder four-stroke heavy-duty compression ignition (CI) engine converted to spark ignition (SI), at an engine speed of 1000 rpm, equivalence ratio of 0.8, and an energy substitution ratio (ESR) of the hydrocarbon fuel up to 0.4. Results showed no penalty on efficiency, as the overall combustion phasing was more optimal as ESR increased. In addition, since all the indicated mean effective pressure (IMEP) values were close to each other for different spark timing (ST), it suggests no need for changing the engine control strategy. COVIMEP showed an increase with ESR, suggesting that the addition of NH3 led to more cycle-to-cycle variations, with propane having the highest COVIMEP. This higher cycle-to-cycle variation for propane–ammonia mixtures was probably coming from a competition between its higher reactivity when compared to the other two hydrocarbons and the effect of different fuel properties on the in-cylinder gas motion.

References

1.
Smith
,
C.
,
Hill
,
A. K.
, and
Torrente-Murciano
,
L.
,
2020
, “
Current and Future Role of Haber–Bosch Ammonia in a Carbon-Free Energy Landscape
,”
Energy Environ. Sci.
,
13
(
2
), pp.
331
344
.10.1039/C9EE02873K
2.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
(
1
), pp.
63
102
.10.1016/j.pecs.2018.07.001
3.
Otto
,
M.
,
Chagoya
,
K. L.
,
Blair
,
R. G.
,
Hick
,
S. M.
, and
Kapat
,
J. S.
,
2022
, “
Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation
,”
J. Energy Storage
,
55
(
1
), p.
105714
.10.1016/j.est.2022.105714
4.
Giddey
,
S.
,
Badwal
,
S. P. S.
, and
Kulkarni
,
A.
,
2013
, “
Review of Electrochemical Ammonia Production Technologies and Materials
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14576
14594
.10.1016/j.ijhydene.2013.09.054
5.
Sun
,
J.
,
Alam
,
D.
,
Daiyan
,
R.
,
Masood
,
H.
,
Zhang
,
T.
,
Zhou
,
R.
,
Cullen
,
P. J.
,
Lovell
,
E. C.
,
Jalili
,
A. (Rouhollah)
, and
Amal
,
R.
,
2021
, “
A Hybrid Plasma Electrocatalytic Process for Sustainable Ammonia Production
,”
Energy Environ. Sci.
,
14
(
2
), pp.
865
872
.10.1039/D0EE03769A
6.
Ishaq
,
H.
, and
Dincer
,
I.
,
2020
, “
Dynamic Analysis of a New Solar-Wind Energy-Based Cascaded System for Hydrogen to Ammonia
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
18895
18911
.10.1016/j.ijhydene.2020.04.149
7.
Fan
,
Q.
,
Liu
,
X.
,
Xu
,
L.
,
Subash
,
A. A.
,
Brackmann
,
C.
,
Aldén
,
M.
,
Bai
,
X.-S.
, and
Li
,
Z.
,
2022
, “
Flame Structure and Burning Velocity of Ammonia/Air Turbulent Premixed Flames at High Karlovitz Number Conditions
,”
Combust. Flame
,
238
(
1
), p.
111943
.10.1016/j.combustflame.2021.111943
8.
Alvarez
,
L. F.
,
Shaffer
,
J.
,
Dumitrescu
,
C. E.
, and
Askari
,
O.
,
2024
, “
Laminar Burning Velocity of Ammonia/Air Mixtures at High Pressures
,”
Fuel
,
363
(
1
), p.
130986
.10.1016/j.fuel.2024.130986
9.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
10.
Olson
,
N.
,
2014
, “
Who's Your Favorite Chemical?
,”
NH3 XI
, Des Moines, IA, Sept. 21–24.https://nh3fuelassociation.org/wp-content/uploads/2014/10/nh3fa-2014-norm-olson.pdf
11.
Verkamp
,
F. J.
,
Hardin
,
M. C.
, and
Williams
,
J. R.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.10.1016/S0082-0784(67)80225-X
12.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
NO Formation/Reduction Mechanisms of Ammonia/Air Premixed Flames at Various Equivalence Ratios and Pressures
,”
Mech. Eng. J.
,
2
(
1
), p. 14–00402.10.1299/mej.14-00402
13.
Alvarez
,
L. F.
, and
Dumitrescu
,
C. E.
,
2024
, “
Experimental Study of Ammonia Combustion in a Heavy-Duty Diesel Engine Converted to Spark Ignition Operation
,”
SAE
Paper No. 2024-01-2371.10.4271/2024-01-2371
14.
Mounaïm-Rousselle
,
C.
,
Mercier
,
A.
,
Brequigny
,
P.
,
Dumand
,
C.
,
Bouriot
,
J.
, and
Houillé
,
S.
,
2022
, “
Performance of Ammonia Fuel in a Spark Assisted Compression Ignition Engine
,”
Int. J. Engine Res.
,
23
(
5
), pp.
781
792
.10.1177/14680874211038726
15.
Cornelius
,
W.
,
Huellmantel
,
L. W.
, and
Mitchell
,
H. R.
,
1966
, “
Ammonia as an Engine Fuel
,”
SAE Trans.
,
74
(
1966
), pp.
300
326
.10.4271/650052
16.
Weaver
,
C. S.
,
1989
, “
Natural Gas Vehicles—A Review of the State of the Art
,”
SAE Trans.
,
98
(
1989
), pp.
1190
1210
.10.4271/892133
17.
Hajbabaei
,
M.
,
Karavalakis
,
G.
,
Johnson
,
K. C.
,
Lee
,
L.
, and
Durbin
,
T. D.
,
2013
, “
Impact of Natural Gas Fuel Composition on Criteria, Toxic, and Particle Emissions From Transit Buses Equipped With Lean Burn and Stoichiometric Engines
,”
Energy
,
62
(
1
), pp.
425
434
.10.1016/j.energy.2013.09.040
18.
Oh
,
S.
,
Park
,
C.
,
Kim
,
S.
,
Kim
,
Y.
,
Choi
,
Y.
, and
Kim
,
C.
,
2021
, “
Natural Gas–Ammonia Dual-Fuel Combustion in Spark-Ignited Engine With Various Air–Fuel Ratios and Split Ratios of Ammonia Under Part Load Condition
,”
Fuel
,
290
(
1
), p.
120095
.10.1016/j.fuel.2020.120095
19.
Kurien
,
C.
,
Varma
,
P. S.
, and
Mittal
,
M.
,
2023
, “
Effect of Ammonia Energy Fractions on Combustion Stability and Engine Characteristics of Gaseous (Ammonia/Methane) Fueled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
48
(
4
), pp.
1391
1400
.10.1016/j.ijhydene.2022.10.032
20.
Uddeen
,
K.
,
Tang
,
Q.
,
Shi
,
H.
, and
Turner
,
J.
,
2024
, “
Performance and Emission Analysis of Ammonia-Ethanol and Ammonia-Methane Dual-Fuel Combustion in a Spark-Ignition Engine: An Optical Study
,”
Fuel
,
358
(
1
), p.
130296
.10.1016/j.fuel.2023.130296
21.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091501
.10.1115/1.4002809
22.
Goswami
,
M.
,
Bastiaans
,
R. J. M.
,
de Goey
,
L. P. H.
, and
Konnov
,
A. A.
,
2016
, “
Experimental and Modelling Study of the Effect of Elevated Pressure on Ethane and Propane Flames
,”
Fuel
,
166
(
1
), pp.
410
418
.10.1016/j.fuel.2015.11.013
23.
Egolfopoulos
,
F. N.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
1991
, “
Experimental and Numerical Determination of Laminar Flame Speeds: Mixtures of C2-Hydrocarbons With Oxygen and Nitrogen
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
471
478
.10.1016/S0082-0784(06)80293-6
24.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2005
, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
193
200
.10.1016/j.proci.2004.08.228
25.
Hassan
,
M. I.
,
Aung
,
K. T.
,
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
1998
, “
Properties of Laminar Premixed Hydrocarbon/Air Flames at Various Pressures
,”
J. Propul. Power
,
14
(
4
), pp.
479
488
.10.2514/2.5304
26.
Zhang
,
J.
,
Hu
,
E.
,
Zhang
,
Z.
,
Pan
,
L.
, and
Huang
,
Z.
,
2013
, “
Comparative Study on Ignition Delay Times of C1–C4 Alkanes
,”
Energy Fuels
,
27
(
6
), pp.
3480
3487
.10.1021/ef400496a
27.
Burcat
,
A.
,
Crossley
,
R. W.
,
Scheller
,
K.
, and
Skinner
,
G. B.
,
1972
, “
Shock Tube Investigation of Ignition Inethane-Oxygen-Argon Mixtures
,”
Combust. Flame
,
18
(
1
), pp.
115
123
.10.1016/S0010-2180(72)80232-3
28.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
29.
Westbrook
,
C. K.
,
2000
, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1563
1577
.10.1016/S0082-0784(00)80554-8
30.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
(
1
), pp.
833
844
.10.1016/j.fuel.2018.05.159
31.
Wang
,
D.
,
Wang
,
Z.
,
Zhang
,
T.
,
Zhai
,
Y.
,
Hou
,
R.
,
Tian
,
Z.-Y.
, and
Ji
,
C.
,
2022
, “
A Comparative Study on the Laminar C1–C4 n-Alkane/NH3 Premixed Flame
,”
Fuel
,
324
(
1
), p.
124732
.10.1016/j.fuel.2022.124732
You do not currently have access to this content.