Abstract

Dissipating heat generated by onboard battery systems is a key thermal management challenge for hybrid/electric aircraft. The National Research Council Canada is collaborating with Calogy Solutions, Ltd. (Sherbrooke, Quebec, Canada) to support their development of a novel aviation battery module. The goal of the project is to optimize the heat sink design for battery thermal management system by minimizing thermal resistance as well as reducing overall weight, considering fabrication cost to be used by the industry. In this research, the original heat sink used by Calogy (plate-fin type) was numerically simulated using commercial software and the results were compared with the experiment. This was done to validate the numerical simulation was accurate enough to be used for future simulations. The heat transfer of the heat sink was enhanced by optimizing fin dimensions and spacing, and fin design modification (a first in this application), based on system analysis of a kW scale hybrid/electric aircraft. The selected model as the optimized heat sink resulted in about 34% improvement in heat transfer coefficient, and about 24% reduction in weight comparing with the original plate-fin type heat sink.

References

1.
Thakur
,
A. K.
,
Prabakaran
,
R.
,
Elkadeem
,
M. R.
,
Sharshir
,
S. W.
,
Arıcı
,
M.
,
Wang
,
C.
,
Zhao
,
W.
,
Hwang
,
J. Y.
, and
Saidur
,
R.
,
2020
, “
A State of Art Review and Future Viewpoint on Advance Cooling Techniques for Lithium–Ion Battery System of Electric Vehicles
,”
J. Energy Storage
,
32
, p.
101771
.10.1016/j.est.2020.101771
2.
Shahjalal
,
M.
,
Shams
,
T.
,
Islam
,
M. E.
,
Alam
,
W.
,
Modak
,
M.
,
Hossain
,
S. B.
,
Ramadesigan
,
V.
,
Ahmed
,
M. R.
,
Ahmed
,
H.
, and
Iqbal
,
A.
,
2021
, “
A Review of Thermal Management for Li-Ion Batteries: Prospects, Challenges, and Issues
,”
J. Energy Storage
,
39
, p.
102518
.10.1016/j.est.2021.102518
3.
Rasimarzabadi
,
F.
,
Crain
,
A.
,
Canteenwalla
,
P.
,
Zdunich
,
P.
, and
Ginbey
,
E.
,
2022
, “
Performance Improvement of Heat Exchangers Used in a Hybrid Electric Aircraft
,”
ASME
Paper No. GT2022-83031.10.1115/GT2022-83031
4.
Danis
,
R. A.
,
Green
,
M. W.
, and
Freeman
,
J. L.
,
2018
, “
Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft
,” Ames Research Center, Mountain View, CA,
Report No. NASA/CR—2018–219897.
5.
Hesselgreaves
,
J. E.
,
2001
,
Compact Heat Exchanger: Selection, Design and Operation
, 1st ed.,
Pergamon
,
Oxford, UK
.
6.
Yang
,
Y. T.
, and
Peng
,
H. S.
,
2008
, “
Numerical Study of Pin-Fin Heat Sink With un-Uniform Fin Height Design
,”
Int. J. Heat Trans.
,
51
(
19–20
), pp.
4788
4796
.10.1016/j.ijheatmasstransfer.2008.02.017
7.
Mert Cuce
,
P.
, and
Cuce
,
E.
,
2014
, “
Optimization of Configurations to Enhance Heat-Transfer From a Longitudinal Fin Exposed to Natural Convection and Radiation
,”
Int. J. Low Carbon Technol.
,
9
(
4
), pp.
305
310
.10.1093/ijlct/ctt005
8.
Kundu
,
B.
, and
Das
,
P. K.
,
2004
, “
Performance and Optimization Analysis for Fins of Straight Taper With Simultaneous Heat and Mass Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
5
), pp.
862
868
.10.1115/1.1798911
9.
Chingulpitak
,
S.
, and
Wongwises
,
S.
,
2015
, “
A Review of the Effect of Flow Directions and Behaviors on the Thermal Performance of Conventional Heat Sinks
,”
Int. J. Heat Mass Transfer
,
81
, pp.
10
18
.10.1016/j.ijheatmasstransfer.2014.09.081
10.
Fidanoglu
,
M.
,
Komurgoz
,
G.
, and
Ozkol
,
I.
,
2016
, “
Heat-Transfer Analysis of Fins With Spine Geometry Using Differential Transform Method
,”
Int. J. Mech. Eng. Rob. Res.
,
5
(
1
), pp.
67
71
.10.18178/ijmerr.5.1.67-71
11.
Khattak
,
Z.
, and
Muhammad Ali
,
H.
,
2019
, “
Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review
,”
Int. J. Heat Mass Transfer
,
130
, pp.
141
161
.10.1016/j.ijheatmasstransfer.2018.08.048
12.
Alihosseini
,
Y.
,
Targhi
,
M. Z.
,
Heyhat
,
M. M.
, and
Ghorbani
,
N.
,
2020
, “
Effect of a Micro Heat Sink Geometric Design on Thermo-Hydraulic Performance: A Review
,”
J. Appl. Therm. Eng.
,
170
, p.
114974
.10.1016/j.applthermaleng.2020.114974
13.
Soleimani
,
S.
,
Campbel
,
M.
, and
Eckels
,
S.
,
2020
, “
Performance Analysis of Different Transverse and Axial Micro-Fins in a Turbulent-Flow Channel
,”
Int. J. Therm. Sci.
,
149
, p.
106185
.10.1016/j.ijthermalsci.2019.106185
14.
Pham1
,
G. D.
,
Cong Do
,
K. D.
,
Chung
,
D. U.
,
Park
,
S. G.
,
Plourde
,
F.
,
Kim
,
K. Y.
, and
Dinh
,
C. T.
,
2023
, “
Heat Transfer Characteristics of an Internal Cooling Channel With Pin- Fins Using Recessed-Extruded Endwall Coupling in Gas Turbine Blade
,”
ASME
Paper No. GT2023-101022.10.1115/GT2023-101022
15.
Bordatchev
,
E. V.
,
Tauhiduzzaman
,
M.
,
Kugler
,
T.
,
Katz
,
A.
, and
Bohr
,
R.
,
2013
, “
Demonstration of Advanced Capabilities of 5-Axis Micromilling: Geometries With High-Aspect Ratio and/or Optical Surface Quality
,”
Proceedings of the 8th International Conference on MicroManufacturing ICOMM'2013
,
Victoria, BC, Canada
, Mar. 25–28, pp.
357
362
.
16.
Bordatchev
,
E. V.
, and
Suweas
,
N.
,
2008
, “
Fabrication of Moulds and Dies Using Precision Laser Micromachining and Micromilling Technologies
,”
J. Laser Micro/Nanoeng.
,
3
(
3
), pp.
175
181
.10.2961/jlmn.2008.03.0009
You do not currently have access to this content.