Graphical Abstract Figure

Modal contributions to the narrowband (6.1 Hz binwidth) SPL at the 120 deg farfield microphone (FF019) at 60% speed setting—total noise signature, m = 0, ±1, ±2, color coded as in legend, dash-dotted magenta line: cumulative contribution from m = 0, ±1; standard-array orientation.

Graphical Abstract Figure

Modal contributions to the narrowband (6.1 Hz binwidth) SPL at the 120 deg farfield microphone (FF019) at 60% speed setting—total noise signature, m = 0, ±1, ±2, color coded as in legend, dash-dotted magenta line: cumulative contribution from m = 0, ±1; standard-array orientation.

Close modal

Abstract

Acoustic data obtained using a small turbofan engine are further analyzed to improve the understanding of core/combustor noise. The relative impact of this propulsion-noise source for civilian-transport aircraft on airport community noise is expected to significantly increase in the future. Simultaneous high-data-rate acoustic measurements acquired using a circumferential infinite-tube-probe array at the core-nozzle exit in conjunction with a farfield microphone array are processed. The test matrix contains engine operational points from idle to the engine-maximum setting, with measurements repeated for different circumferential array configurations, as well as for redundancy. The combustor-noise contribution to the farfield noise signature is obtained using an advanced source-separation method that correlates the farfield microphone measurements with a modal decomposition of the unsteady pressure field at the core-nozzle exit. The advantages of the present approach compared to the classical two-signal source-separation method are discussed.

References

1.
Mongeau
,
L.
,
Huff
,
D.
, and
Tester
,
B. J.
,
2013
, “
Aircraft Noise Technology Review and Medium and Long Term Noise Reduction Goals
,”
Proc. Meetings Acoust.
,
19
(
1
), p.
040041
. 10.1121/1.4800944
2.
Boyle
,
D. K.
,
Henderson
,
B. S.
, and
Hultgren
,
L. S.
,
2021
, “
DGEN Aeropropulsion Research Turbofan Core/Combustor-Noise Measurements—Experiment and Modal Structure at Core-Nozzle Exit
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051020
.10.1115/1.4049882
3.
Boyle
,
D. K.
,
Henderson
,
B. S.
, and
Hultgren
,
L. S.
,
2020
, “
DGEN Aeropropulsion Research Turbofan Core/Combustor-Noise Measurements—Experiment and Modal Structure at Core-Nozzle Exit
,”
ASME
Paper No. GT2020-14194.10.1115/GT2020-14194
4.
Hultgren
,
L. S.
,
Boyle
,
D. K.
, and
Henderson
,
B. S.
,
2020
, “
DGEN Aeropropulsion Research Turbofan Source-Diagnostic Test: Experimental Setup and Acoustic-Data Structure
,” NASA, Washington, DC, Report No.
NASA/TM-20205008042
.https://ntrs.nasa.gov/citations/20205008042
5.
Boyle
,
D. K.
,
Henderson
,
B. S.
, and
Hultgren
,
L. S.
,
2018
, “
Core/Combustor-Noise Baseline Measurements for the DGEN Aeropropulsion Research Turbofan
,”
AIAA
Paper No. 2018-3281.10.2514/6.2018-3281
6.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1980
,
Engineering Applications of Correlation and Spectral Analysis
,
Wiley-Interscience
, New York.
7.
Tam
,
C. K. W.
,
Bake
,
F.
,
Hultgren
,
L. S.
, and
Poinsot
,
T.
,
2019
, “
Combustion Noise: Modeling and Prediction
,”
CEAS Aeronaut. J.
,
10
(
1
), pp.
101
122
.10.1007/s13272-019-00377-2
8.
Mahan
,
R. J.
, and
Karchmer
,
A.
,
1991
, “
Combustion and Core Noise
,”
Aeroacoustics of Flight Vehicles: Theory and Practice
,
H. H.
Hubbard
, ed., Vol.
1
, Chap. 9, NASA Reference Publication 1258, WRDC Report No. 90-3052, pp.
483
517
.
9.
Davis
,
I.
, and
Bennett
,
G. J.
,
2011
, “
Spatial Noise Source Identification of Tonal Noise in Turbomachinery Using the Coherence Function on a Modal Basis
,”
AIAA
Paper No. 2011-2825.10.2514/6.2011-2825
10.
Davis
,
I.
, and
Bennett
,
G. J.
,
2011
, “
Experimental Investigations of Coherence Based Noise Source Identfication Techniques for Turbomachinery Applications - Classic and Novel Techniques
,”
AIAA
Paper No. 2011-2830.10.2514/6.2011-2830
11.
Bennett
,
G. J.
,
Davis
,
I.
, and
Tapken
,
U.
,
2010
, “
Broadband Noise Source Location in Turbomachinery Using a Conditioned Spectral Analysis Technique Coupled With Modal Decomposition
,”
Inter-Noise 2010, 39th International Congress on Noise Control Engineering
, Lisbon, Portugal, pp.
3812
3823
.https://www.researchgate.net/publication/225006269_Broadband_Noise_Source_Localisation_in_Turbomachinery_using_a_Conditioned_Spectral_Analysis_Technique_Coupled_with_Modal_Decomposition
12.
Jürgens
,
W.
,
Pardowitz
,
B.
,
Enghardt
,
L.
, and
Tapken
,
U.
,
2011
, “
Separation of Broadband Noise Sources in Aeroengine Ducts With Respect to Modal Decomposition
,”
AIAA
Paper No. 2011-2879.10.2514/6.2011-2879
13.
Davis
,
I.
, and
Bennett
,
G. J.
,
2015
, “
Novel Noise-Source-Identification Technique Combining Acoustic Modal Analysis and a Coherence-Based Noise-Source-Identification Method
,”
AIAA J.
,
53
(
10
), pp.
3088
3101
.10.2514/1.J053907
14.
Pardowitz
,
B.
,
Tapken
,
U.
,
Knobloch
,
K.
,
Bake
,
F.
,
Bouty
,
E.
,
Davis
,
I.
, and
Bennett
,
G.
,
2014
, “
Core Noise — Identification of Broadband Noise Sources of a Turbo-Shaft Engine
,”
AIAA
Paper No. 2014-3321.10.2514/6.2014-3321
15.
Sijtsma
,
P.
,
Dreux
,
M.
,
Delescluse
,
B.
,
Leneveu
,
R.
, and
Mardjoni
,
J.
,
2024
, “
Coherent Output Power With Groups of Microphones
,”
AIAA
Paper No. 2024-3330.10.2514/6.2024-3330
16.
Hart
,
A.
,
Holland
,
K. R.
, and
Joseph
,
P.
,
2018
, “
Enhanching Array Techniques for Measuring Jet Engine Combustion Noise Using a Modal Isolation Method
,”
AIAA
Paper No. 2018-2967.10.2514/6.2018-2967
17.
Rodríguez-García
,
P.
,
Holland
,
K. R.
, and
Tester
,
B. J.
,
2014
, “
Extraction of Turbofan Combustion Noise Spectra Using a Combined Coherence-Beamforming Technique
,”
AIAA
Paper No. 2014-3286.10.2514/6.2014-3286
18.
Chung
,
J. Y.
,
1977
, “
Rejection of Flow Noise Using a Coherence Function Method
,”
J. Acoust. Soc. Am.
,
62
(
2
), pp.
388
395
.10.1121/1.381537
19.
Hultgren
,
L. S.
, and
Miles
,
J. H.
,
2009
, “
Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine
,”
AIAA
Paper No. 2009-322010.2514/6.2009-3220.
20.
United States of America, 2025, “
Title 14 Code of Federal Regulations Part33 (eCFR)
,”
accessed Feb. 21, 2025
, https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-33
21.
Hultgren
,
L. S.
,
2015
, “
A First Look at the DGEN380 Engine Acoustic Data From a Core-Noise Perspective
,” NASA, Washington, DC, Report No.
NASA/TM–2015-218924
.https://ntrs.nasa.gov/api/citations/20150023070/downloads/20150023070.pdf
22.
Sutliff
,
D. L.
,
Brown
,
C. A.
,
Bayon
,
B.
, and
Sree
,
D.
,
2016
, “
Farfield Acoustic Characteristics of the DGEN380 Turbofan Engine as Measured in the NASA Glenn Aero-Acoustic Propulsion Laboratory
,”
AIAA
Paper No. 2016-3006.10.2514/6.2016-3006
23.
Boyle
,
D. K.
,
Henderson
,
B. S.
, and
Hultgren
,
L. S.
,
2019
, “
Transfer-Function Determination for Infinite-Tube-Probe Pressure Transducers With Application to Turbofan Core/Combustor Noise
,”
AIAA
Paper No. 2019-258810.2514/6.2019-2588.
24.
Ahuja
,
K. K.
,
2003
, “
Designing Clean Jet-Noise Facilities and Making Accurate Jet-Noise Measurements
,”
Int. J. Aeroacoustics
,
2
(
3
), pp.
371
412
.10.1260/147547203322986188
25.
Karchmer
,
A. M.
,
1983
, “
Acoustic Modal Analysis of a Full Scale Annular Combustor
,”
AIAA
Paper No. 1983-076010.2514/6.1983-0760.
26.
Schuster
,
B.
, and
Mendoza
,
J. M.
,
2007
, “
Auxiliary Power Unit Combustion Noise Mesurements
,” X3-NOISE Scientific Workshop, Lisbon, Portugal, Sept. 27–28, Paper No. 2.
27.
Royalty
,
C. M.
, and
Schuster
,
B.
,
2008
, “
Noise From a Turbofan Engine Without a Fan From the Engine Validation of Noise and Emission Reduction Technology (EVNERT) Program
,”
AIAA
Paper No. 2008-2810.10.2514/6.2008-2810
28.
Krejsa
,
E. A.
, and
Karchmer
,
A. M.
,
1983
, “
Acoustic Modal Analysis of the Pressure Field in the Tailpipe of a Turbofan Engine
,” NASA, Washington, DC, Report No.
NASA-TM-83387
.https://ntrs.nasa.gov/citations/19830017228
29.
Miles
,
J. H.
,
2007
, “
Restricted Modal Analysis Applied to Internal Annular Combustor Autosoectra and Cross-Spectra Measurements
,”
AIAA J.
,
45
(
5
), pp.
988
999
.10.2514/1.25179
30.
Zorumski
,
W. E.
,
1982
, “
Aircraft Noise Prediction Program Theoretical Manual, Part 1
,” NASA, Washington, DC, Report No.
NASA-TM-83199-PT-1
.https://ntrs.nasa.gov/citations/19820012072
31.
Zorumski
,
W. E.
,
1982
, “
Aircraft Noise Prediction Program Theoretical Manual, Part 2
,” NASA, Washington, DC, Report No.
NASA-TM-83199-PT-2
.https://ntrs.nasa.gov/citations/19820012073
32.
Society of Automotive Engineers International
,
2006
(Reaffirmed 2012), “
Gas Turbine Jet Exhaust Prediction
,” Technical Standard (
Aerospace Recommended Practice
) No. SAE ARP876 Rev. E.
33.
Sijtsma
,
P.
,
2024
, Private Communication.
34.
Sijtsma
,
P.
,
Merino-Martinez
,
R.
,
Malgoezar
,
A. M.
, and
Snellen
,
M.
,
2017
, “
High-Resolution CLEAN-SC: Theory and Experimental Validation
,”
Int. J. Aeroacoustics
,
16
(
4–5
), pp.
274
298
.10.1177/1475472X17713034
35.
Tester
,
B. J.
,
Funke
,
S.
,
Britchford
,
K. M.
, and
Knighton
,
C. J.
,
2022
, “
Application of a Noise Source Separation Method (AFINDS) to External Array Measurements Taken on Short Cowl Engines in Anechoic, Outdoor, and Indoor Facilities
,”
AIAA
Paper No. 2022-2811.10.2514/6.2022-2811
36.
Tester
,
B. J.
,
2014
, “
Engine Noise Source Breakdowns From an Improved Inverse Method (AFINDS) of Processing Phased Array Measurements
,”
AIAA
Paper No. 2014-3067.10.2514/6.2014-3067
You do not currently have access to this content.