Abstract

This paper aims to provide an understanding of sCO2 inviscid adiabatic normal shock behavior near the critical point and to develop an explicit tool for faster prediction of the shock relations that can aid the supercritical turbomachinery design process. An iterative algorithm was developed to compute shockwave behaviors for nonideal fluids. Three important shock behavior parameters were investigated: postshock Mach number, shock strength, and polytropic efficiency. A comparative study was carried out between air (ideal gas assumption), ideal gas CO2 (ideal gas assumption), and nonideal fluid CO2 (Span–Wagner equation of state). The distinct differences show the inadequacy of the perfect gas shock relations when predicting sCO2 shock behavior near the critical point. The results of nonideal fluid calculations show a general trend of stronger shock strengths and higher polytropic efficiencies toward lower preshock entropy conditions. This is also distinctive near the critical point due to the reduced speed of sound. Finally, explicit expressions for these parameters were retrieved using symbolic regression. The fitted models have significant improvements compared to the prediction from perfect gas shock relations with a 5–20% point reduction in relative errors. This study also shows the potential for machine learning to be applied in nonideal fluid effects modeling and the methodology developed in this paper can be easily introduced to other working fluids in their ranges of interest.

References

1.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
SANDIA
,
Albuquerque, NM and Livermore, CA
, Report No.
SAND2010-0171
, p.
101
.https://www.osti.gov/servlets/purl/984129
2.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
3.
Cinnella
,
P.
,
Congedo
,
P. M.
, and
Laforgia
,
D.
,
2006
, “
Transonic Flows of BZT Fluids Through Turbine Cascades
,”
Computational Fluid Dynamics 2004
,
Springer
,
Berlin, Heidelberg
, pp.
227
232
.10.1007/3-540-31801-1_29
4.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
Design and Off-Design Analysis of a Highly Loaded Centrifugal Compressor for sCO2 Applications Operating in Near-Critical Conditions
,”
4th European sCO2 Conference for Energy Systems
, Online Conference, Mar. 22–26, pp.
1
10
.10.17185/duepublico/73969
5.
Schobeiri
,
M. T.
,
1998
, “
Shock-Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades
,”
J. Propul. Power
,
14
(
4
), pp.
470
478
.10.2514/2.5324
6.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME
Paper No. 93-GT-435.10.1115/93-GT-435
7.
Japikse
,
D.
,
2009
, “
Turbomachinery Performance Modeling
,”
SAE
Paper No. 2009-01-0307.10.4271/2009-01-0307
8.
Baltadjiev
,
N. D.
,
2012
, “
An Investigation of Real Gas Effects in Supercritical CO2 Compressors
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/77101
9.
Lemmon
,
E. W.
,
Bell
,
I.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,” Version 10.0, National Institute of Standards and Technology, Boulder, CO.
10.
Kouremenos
,
D. A.
,
1986
, “
The Normal Shock Waves of Real Gases and the Generalized Isentropic Exponents
,”
Forsch. Ingenieurwes.
,
52
(
1
), pp.
23
31
.10.1007/BF02558430
11.
Ameli
,
A.
,
Afzalifar
,
A.
, and
Turunen-Saaresti
,
T.
,
2017
, “
Non-Equilibrium Condensation of Supercritical Carbon Dioxide in a Converging-Diverging Nozzle
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012025
.10.1088/1742-6596/821/1/012025
12.
Oleinik
,
O.
,
1959
, “
Uniqueness and Stability of the Generalized Solution of the Cauchy Problem for a Quasi-Linear Equation
,”
Usp. Mat. Nauk
,
14
(
2
), pp.
165
170
.https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=7292&option_lang=eng
13.
Thompson
,
P. A.
, and
Lambrakis
,
K. C.
,
1973
, “
Negative Shock Waves
,”
J. Fluid Mech.
,
60
(
1
), pp.
187
208
.10.1017/S002211207300011X
14.
Borisov
,
A. A.
,
Borisov
,
A. A.
,
Kutateladze
,
S. S.
, and
Nakoryakov
,
V. E.
,
1983
, “
Rarefaction Shock Wave Near the Critical Liquid-Vapour Point
,”
J. Fluid Mech.
,
126
(
i
), pp.
59
73
.10.1017/S002211208300004X
15.
Nannan
,
N. R.
,
Sirianni
,
C.
,
Mathijssen
,
T.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2016
, “
The Admissibility Domain of Rarefaction Shock Waves in the Near-Critical Vapour-Liquid Equilibrium Region of Pure Typical Fluids
,”
J. Fluid Mech.
,
795
, pp.
241
261
.10.1017/jfm.2016.197
16.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
17.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
18.
Lund
,
H.
,
2012
, “
A Hierarchy of Relaxation Models for Two-Phase Flow
,”
SIAM J. Appl. Math.
,
72
(
6
), pp.
1713
1741
.10.1137/12086368X
19.
Stephens
,
T.
,
2015
,
gplearn: Genetic Programming in Python, With a Scikit-Learn Inspired API
.https://gplearn.readthedocs.io/en/stable/
You do not currently have access to this content.