Abstract

In this study, the thermoacoustic behavior of nonpremixed kerosene flames from rich to lean combustion conditions is investigated. Flame-transfer-functions (FTF) measured purely acoustically are compared with results based on flame chemiluminescence. OH*,CH*,C2*, and CO2* were selected as potential measures for representing steady and fluctuating heat release when burning nonpremixed kerosene. In addition, their ability for the quantification of equivalence ratio fluctuations will be highlighted. The measurements were performed in the primary zone of an atmospheric rich-quench-lean (RQL) combustion test-rig. The new experimental approach allows a characterization of the primary zone independent of the secondary zone. Rich and lean operating points were analyzed by fueling an aero-engine prototype injector with and without acoustic excitation. To improve the quality of the acoustic wavefield reconstruction a thermocouple correction method was implemented. The flame dynamics determined with the multimicrophone method (MMM) exhibit a frequency and equivalence ratio depending effect of rich combustion conditions. The results for the steady behavior of the chosen radicals by altering equivalence ratio and thermal power indicate proportionality of the chemiluminescence to thermal power. Furthermore, the CH*/C2* ratio is found to be a promising indicator for the global equivalence ratio in the combustion chamber. The flame-transfer-functions based on chemiluminescence show a good qualitative agreement with the multimicrophone method. Based on the experimental findings a calibration curve for the different radicals to obtain quantitatively correct flame-transfer-functions from chemiluminescence is presented.

References

1.
European Commission
,
2011
, “
Directorate-General for Mobility and Transport, and Directorate-General for Research and Innovation
,”
Flightpath 2050: Europe's Vision for Aviation: Maintaining Global Leadership and Serving Society's Needs
,
Publications Office
, Luxembourg.
2.
Chang
,
C.
, and
Holdeman
,
J.
,
2001
, “
Low Emissions RQL Flametube Combustor Test Results
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA/TM-2001-210678
.https://ntrs.nasa.gov/citations/20030056585
3.
Samuelsen
,
S.
,
2006
, “
Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor
,”
Gas Turbine Handbook
, National Energy Technology Laboratory, Pittsburgh, PA, pp.
227
233
.
4.
Makida
,
M.
,
Yamada
,
H.
, and
Shimodaira
,
K.
,
2012
, “
Detailed Research on Rich-Lean Type Single Sector Combustor for Small Aircraft Engine Tested Under Practical Conditions Up to 3Mpa
,”
ASME
Paper No. GT2012-68468.10.1115/GT2012-68468
5.
March
,
M.
,
Renner
,
J.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2021
, “
Design and Validation of a Novel Test-Rig for RQL Flame Dynamics Studies
,”
ASME
Paper No. GT2021-58602.10.1115/GT2021-58602
6.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
7.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
8.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, New York.
9.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
von der Bank
,
R.
, and
Schilling
,
T.
,
2005
, “
Forced Low-Frequency Spray Characteristics of a Generic Airblast Swirl Diffusion Burner
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
301
306
.10.1115/1.1789515
10.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
264
270
.10.1115/1.2132379
11.
Eckstein
,
J.
,
2004
, “
On the Mechanisms of Combustion Driven Low-Frequency Oscillations in Aero-Engines
,”
Ph.D. thesis
,
Technische Universität München
,
München, Germany
.https://www.epc.ed.tum.de/fileadmin/w00cgc/td/Forschung/Dissertationen/eckstein.pdf
12.
Cai
,
J.
,
Ichihashi
,
F.
,
Mohammad
,
B.
,
Tambe
,
S.
,
Kao
,
J.-H.
, and
Jeng
,
S.-M.
,
2010
, “
Gas Turbine Single Annular Combustor Sector: Combustion Dynamics
,”
AIAA
Paper No. 2010–21.10.2514/6.2010-21
13.
Abdelnabi
,
B.
,
Cai
,
J.
,
Tambe
,
S.
,
Kao
,
J.-H.
, and
Jeng
,
S.-M.
,
2011
, “
Combustion Dynamics and Emissions Characterization for a Gas Turbine Combustor Burning Methane and Propane
,”
AIAA
Paper No. 2011-5704.10.2154/6.2011-5704
14.
Venkatesan
,
K.
,
Cross
,
A.
, and
Han
,
F.
,
2022
, “
Acoustic Flame Transfer Function Measurements in a Liquid Fueled High Pressure Aero-Engine Combustor
,”
ASME
Paper No. GT2022-81769.10.1115/GT2022-81769
15.
Nori
,
V.
, and
Seitzman
,
J.
,
2007
, “
Chemiluminescence Measurements and Modeling in Syngas, Methane and Jet-a Fueled Combustors
,”
AIAA
Paper No. 2007-466.10.2154/6.2007-466
16.
Vogel
,
M.
,
Bachfischer
,
M.
,
Kaufmann
,
J.
, and
Sattelmayer
,
T.
,
2021
, “
Experimental Investigation of Equivalence Ratio Fluctuations in a Lean Premixed Kerosene Combustor
,”
Exp. Fluids
,
62
(
5
), p.
93
.10.1007/s00348-021-03197-5
17.
Vogel
,
M.
,
Bachfischer
,
M.
,
Kaufmann
,
J.
, and
Sattelmayer
,
T.
,
2022
, “
Optical Equivalence Ratio Measurement of a Dual Fuel Burner for Natural Gas and Kerosene
,”
Fluids
,
7
(
2
), p.
43
.10.3390/fluids7020043
18.
Lauer
,
M.
,
2011
, “
Determination of the Heat Release Distribution in Turbulent Flames by Chemiluminescence Imaging
,”
Ph.D. thesis
,
Technische Universität München
,
München, Germany
.https://mediatum.ub.tum.de/doc/1071121/1071121.pdf
19.
Lee
,
H.
, and
Seo
,
S.
,
2015
, “
Experimental Study on Spectral Characteristics of Kerosene Swirl Combustion
,”
Procedia Eng.
,
99
, pp.
304
312
.10.1016/j.proeng.2014.12.539
20.
Weber
,
M.
,
Song
,
J.
, and
Lee
,
J. G.
,
2021
, “
Characterization of Dynamics of Unstable Fuel-Rich Flame
,”
ASME
Paper No. GT2021-60121.10.1115/GT2021-60121
21.
Yi
,
T.
, and
Santavicca
,
D. A.
,
2009
, “
Flame Spectra of a Turbulent Liquid-Fueled Swirl-Stabilized Lean-Direct Injection Combustor
,”
J. Propul. Power
,
25
(
5
), pp.
1058
1067
.10.2514/1.43003
22.
Bobusch
,
B. C.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Sadig
,
S.
,
2012
, “
Thermoacoustic Stability Analysis of a Kerosene-Fueled Lean Direct Injection Combustor Employing Acoustically and Optically Measured Transfer Matrices
,”
ASME
Paper No. GT2012-69034.10.1115/GT2012-69034
23.
Fischer
,
A.
,
2003
, “
Hybride, Thermoakustische Charakterisierung Von Drallbrennern
,”
Ph.D. thesis
,
Technische Universität München
,
München, Germany
.https://d-nb.info/971839530/34
24.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
Wiley
, Chichester, UK.
25.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.10.1016/j.pecs.2005.10.003
26.
Munjal
,
M.
, and
Doige
,
A.
,
1990
, “
Theory of a Two Source-Location Method for Direct Experimental Evaluation of the Four-Pole Parameters of an Aeroacoustic Element
,”
J. Sound Vib.
,
141
(
2
), pp.
323
333
.10.1016/0022-460X(90)90843-O
27.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, p.
218
.https://infoscience.epfl.ch/record/33275?ln=en#:~:text=The%20thermoacoustic%20network%20model%20combines,not%20require%20a%20numerical%20search
28.
Paschereit
,
C.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
29.
Chu
,
B.-T.
,
1953
, “
On the Generation of Pressure Waves at a Plane Flame Front
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
603
612
.10.1016/S0082-0784(53)80081-0
30.
Bradley
,
D.
, and
Entwistle
,
A. G.
,
1961
, “
Determination of the Emissivity, for Total Radiation, of Small Diameter Platinum-10% Rhodium Wires in the Temperature Range 600–1450 °C
,”
Br. J. Appl. Phys.
,
12
(
12
), pp.
708
711
.10.1088/0508-3443/12/12/328
31.
Balat-Pichelin
,
M.
,
Sans
,
J.-L.
,
Bêche
,
E.
,
Charpentier
,
L.
,
Ferrière
,
A.
, and
Chomette
,
S.
,
2021
, “
Emissivity at High Temperature of Ni-Based Superalloys for the Design of Solar Receivers for Future Tower Power Plants
,”
Sol. Energy Mater. Sol. Cells
,
227
, p.
111066
.10.1016/j.solmat.2021.111066
32.
Verein deutscher Ingenieure
,
2013
,
VDI-Wärmeatlas
, 11th ed.,
VDI-Buch, Springer
,
Berlin, Heidelberg, Germany
.
33.
Gaydon
,
A. G.
,
1974
,
The Spectroscopy of Flames
,
Chapman and Hall
, London, UK.
34.
Kaufmann
,
J.
,
Vogel
,
M.
,
Papenbrock
,
J.
, and
Sattelmayer
,
T.
,
2022
, “
Comparison of the Flame Dynamics of a Premixed Dual Fuel Burner for Kerosene and Natural Gas
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
176
185
.10.1177/17568277221091405
35.
Renner
,
J.
,
March
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2022
, “
Flame Dynamics in the Lean Burnout Zone of an RQL Combustion Chamber-Response to Primary Zone Velocity Fluctuations
,”
Int. J. Spray Combust. Dyn.
,
14
(
3–4
), pp.
238
250
.10.1177/17568277221128169
You do not currently have access to this content.