Abstract

A supercritical CO2 (S-CO2) Brayton cycle is expected to have high compactness, simple configuration, and competitive efficiency. These advantages originated from CO2 nonideal gas properties near the critical point. However, the strong real gas effect makes the design challenging. Among components, turbomachinery is most affected by the real gas effects of S-CO2. In order to obtain accurate design of the turbomachinery, accurate loss models are needed. Windage loss is one of the external losses that determines the motor load and is responsible for heat generation due to friction. The overall turbomachinery efficiency is greatly affected by the windage loss especially in an S-CO2 power cycle due to high fluid density and high rotational speed. Therefore, an accurate windage loss model that can reflect the real gas effect of CO2 near the critical point is essential to obtain accurate design of the turbomachinery as well as the power cycle. In this paper, existing windage loss models are compared under S-CO2 conditions first, and the applicability of each model is evaluated. The comparison is to understand how much turbomachinery performance uncertainty can be expected due to the windage loss models and to suggest the way to improve the models.

References

1.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Advanced Nuclear Power Technology Program
,
MIT
, Cambridge, MA, Report No. Design MIT-ANP-TR-100.https://web.mit.edu/22.33/www/dostal.pdf
2.
Cho
,
S. K.
,
Bae
,
S. J.
,
Jeong
,
Y.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2019
, “
Direction for High-Performance Supercritical CO2 Centrifugal Compressor Design for Dry Cooled Supercritical CO2 Brayton Cycle
,”
Appl. Sci.
,
9
(
19
), p.
4057
.10.3390/app9194057
3.
Moroz
,
L.
,
Burlaka
,
M.
, and
Rudenko
,
O.
,
2014
, “
Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant
,”
Fourth International Symposium-Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10.https://www.semanticscholar.org/paper/Study-of-a-Supercritical-CO-2-Power-Cycle-in-a-Moroz-Burlaka/c7544099bd4dec34307ca047feee9c2d354929c3
4.
Uusitalo
,
A.
,
Turunen-Saaresti
,
T.
, and
Grönman
,
A.
,
2021
, “
Design and Loss Analysis of Radial Turbines for Supercritical CO2 Brayton Cycles
,”
Energy
,
230
, p.
120878
.10.1016/j.energy.2021.120878
5.
Cho
,
J.
,
Choi
,
M.
,
Baik
,
Y. J.
,
Lee
,
G.
,
Ra
,
H. S.
,
Kim
,
B.
, and
Kim
,
M.
,
2016
, “
Development of the Turbomachinery for the Supercritical Carbon Dioxide Power Cycle
,”
Int. J. Energy Res.
,
40
(
5
), pp.
587
599
.10.1002/er.3453
6.
Vrancik
,
J. E.
,
1968
,
Prediction of Windage Power Loss in Alternators
,
NASA
,
Washington, DC
, Report No. TN D-4849.https://ntrs.nasa.gov/api/citations/19680027690/downloads/19680027690.pdf
7.
Cho
,
S. K.
,
Son
,
S.
,
Lee
,
J.
,
Lee
,
S. W.
,
Jeong
,
Y.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2021
, “
Optimum Loss Models for Performance Prediction of Supercritical CO2 Centrifugal Compressor
,”
Appl. Therm. Eng.
,
184
, p.
116255
.10.1016/j.applthermaleng.2020.116255
8.
Pasch
,
J. J.
, et al.
2012
,
Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description
,
Sandia National Laboratories (SNL)
,
Albuquerque, NM, and Livermore, CA
, Report No. SAND2012-9546.
9.
Wright
,
S. A.
, et al.,
2010
,
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,
Sandia National Laboratories (SNL)
,
Albuquerque, NM, and Livermore, CA
, Report No. SAND2010-0171.
10.
Ustimenko
,
B. P.
,
1972
, “
Calculation of the Turbulent Characteristics of Channel Flow With Rotating Inner Cylinder
,”
J. Appl. Mech. Tech. Phys.
,
10
(
3
), pp.
445
451
.10.1007/BF00916178
11.
Rosset
,
K.
, and
Schiffmann
,
J.
,
2020
, “
Extended Windage Loss Models for Gas Bearing Supported Spindles Operated in Dense Gases
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061010
.10.1115/1.4047124
12.
Nachouane
,
A. B.
,
Abdelli
,
A.
,
Friedrich
,
G.
, and
Vivier
,
S.
,
2016
, “
Estimation of Windage Losses Inside Very Narrow Air Gaps of High Speed Electrical Machines Without an Internal Ventilation Using CFD Methods
,”
2016 XXII International Conference on Electrical Machines (ICEM)
, Lausanne, Switzerland, Sept. 4–7, pp.
2704
2710
.10.1109/ICELMACH.2016.7732904
13.
Qin
,
K.
,
Li
,
D.
,
Huang
,
C.
,
Sun
,
Y.
,
Wang
,
J.
, and
Luo
,
K.
,
2020
, “
Numerical Investigation on Heat Transfer Characteristics of Taylor Couette Flows Operating With CO2
,”
Appl. Therm. Eng.
,
165
, p.
114570
.10.1016/j.applthermaleng.2019.114570
14.
Tachibana
,
F.
, and
Fukui
,
S.
,
1964
, “
Convective Heat Transfer of the Rotational and Axial Flow Between Two Concentric Cylinders
,”
Bull. JSME
,
7
(
26
), pp.
385
391
.10.1299/jsme1958.7.385
15.
Kim
,
D. K.
,
2019
,
Study of Magnetic Bearing Instability for KAIST Micro Modular Reactor Application
,
KAIST
, Daejeon, South Korea.
16.
Lee
,
J. J.
,
Oh
,
B. S.
,
Baek
,
J. Y.
, and
Lee
,
J. I.
,
2019
, “
Preliminary Study on Tank Design for S-CO2 Power Cycle Inventory Control
,”
The Transactions of the Korean Nuclear Society Autumn Meeting
, Goyang, Korea, Oct. 24–25.
17.
Özkan
,
M.
,
Thomas
,
P. J.
,
Cooper
,
A. J.
, and
Garrett
,
S. J.
,
2017
, “
Comparison of the Effects of Surface Roughness and Confinement on Rotor–Stator Cavity Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
142
158
.10.1080/19942060.2016.1247297
18.
Yamada
,
Y.
,
1962
, “
Resistance of a Flow Through an Annulus With an Inner Rotating Cylinder
,”
Bull. JSME
,
5
(
18
), pp.
302
310
.10.1299/jsme1958.5.302
19.
Tachibana
,
F.
,
Fukui
,
S.
, and
Mitsumura
,
H.
,
1960
, “
Heat Transfer in an Annulus With an Inner Rotating Cylinder
,”
Bull. JSME
,
3
(
9
), pp.
119
123
.10.1299/jsme1958.3.119
20.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.10.1016/0017-9310(75)90222-7
21.
Kim
,
S. G.
,
Yu
,
H.
,
Moon
,
J.
,
Baik
,
S.
,
Kim
,
Y.
,
Jeong
,
Y. H.
, and
Lee
,
J. I.
,
2017
, “
A Concept Design of Supercritical CO2 Cooled SMR Operating at Isolated Microgrid Region
,”
Int. J. Energy Res.
,
41
(
4
), pp.
512
525
.10.1002/er.3633
You do not currently have access to this content.