Abstract

In order to decrease their environmental impact, turbo-engine manufacturers tend to increase the span of fan blades while maintaining a slender profile. This design leads to more pronounced geometrical nonlinear effects. Computing the frequency response function of such structures is complicated due to the size of their associated finite element model. Classical substructuring approaches are no longer efficient to reduce the size of the problem as all the nodes of the system must be kept since they experience nonlinear behaviors. Different reduction methodologies have been defined in the past decades to tackle such nonlinear systems. Among these strategies, the direct normal form (DNF) extends the theory of normal form to finite element models. This methodology is here applied to a single blade model. Based on the assumption of a fairly rigid disk and the cyclic symmetric properties, a full cyclic symmetric reduced-order model is computed. In this work, this methodology is extended to account for random mistuning. Such a strategy allows to perform, for instance, fast parametric studies. This paper studies the sensitivity of the random mistuning on a nonlinear open rotor system in order to help turbo-engineers in their design phase. Three ranges of the excitation level are studied. At a low level of excitation, the system is close to the linear case. For higher forcing amplitude, a high amplification factor (AF) due to the merge of an isolated branch is observed, which is detrimental for the structure. For the last range (containing the highest forcing amplitudes), the nonlinearities are highly activated, and low values of the amplification factor are obtained due to the spread of the vibrational energy over the frequency range.

References

1.
Valid
,
R.
, and
Ohayon
,
R.
,
1985
, “
Théorie et Calcul Statique et Dynamique Des Structures à Symétries Cycliques
,”
Rech. Aérosp.
, pp.
251
263
.
2.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
3.
El-Bayoumy
,
L. E.
, and
Srinivasan
,
A. V.
,
1975
, “
Influence of Mistuning on Rotor-Blade Vibrations
,”
AIAA J.
,
13
(
4
), pp.
460
464
.10.2514/3.49731
4.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
5.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.10.2514/2.1542
6.
Tan
,
Y.
,
Zang
,
C.
, and
Petrov
,
E. P.
,
2019
, “
Mistuning Sensitivity and Optimization for Bladed Disks Using High-Fidelity Models
,”
Mech. Syst. Signal Process.
,
124
, pp.
502
523
.10.1016/j.ymssp.2019.02.002
7.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2014
, “
Vibration Reduction of Mistuned Bladed Disks by Passive Piezoelectric Shunt Damping Techniques
,”
AIAA J.
,
52
(
6
), pp.
1194
1206
.10.2514/1.J052202
8.
Singh
,
R.
, and
Lee
,
C.
,
1993
, “
Frequency Response of Linear Systems With Parameter Uncertainties
,”
J. Sound Vib.
,
168
(
1
), pp.
71
92
.10.1006/jsvi.1993.1362
9.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2004
, “
Nonparametric Modeling of Random Uncertainties for Dynamic Response of Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
610
618
.10.1115/1.1760527
10.
Bladh
,
R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
311
324
.10.1115/1.1447236
11.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
12.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Process.
,
87
, pp.
71
90
.10.1016/j.ymssp.2016.09.041
13.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
14.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J. C.
, and
Batailly
,
A.
,
2021
, “
Reduced Order Modeling of Blades With Geometric Nonlinearities and Contact Interactions
,”
J. Sound Vib.
,
500
, p.
116037
.10.1016/j.jsv.2021.116037
15.
Pourkiaee
,
S. M.
,
Zucca
,
S.
, and
Parker
,
R. G.
,
2022
, “
Relative Cyclic Component Mode Synthesis: A Reduced Order Modeling Approach for Mistuned Bladed Disks With Friction Interfaces
,”
Mech. Syst. Signal Process.
,
163
, p.
108197
.10.1016/j.ymssp.2021.108197
16.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2022
, “
Nonlinear Stochastic Dynamics of Detuned Bladed-Disks With Uncertain Mistuning and Detuning Optimization Using a Probabilistic Machine Learning Tool
,”
Int. J. Non-Linear Mech.
,
143
, p.
104023
.10.1016/j.ijnonlinmec.2022.104023
17.
Picou
,
A.
,
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mbaye
,
M.
,
2020
, “
Robust Dynamic Analysis of Detuned-Mistuned Rotating Bladed Disks With Geometric Nonlinearities
,”
Comput. Mech.
,
65
(
3
), pp.
711
730
.10.1007/s00466-019-01790-4
18.
Quaegebeur
,
S.
,
Chouvion
,
B.
,
Di Palma
,
N.
, and
Thouverez
,
F.
,
2023
, “
Model Reduction of a Cyclic Symmetric Structure Exhibiting Geometric Nonlinearity With a Normal Form Approach
,”
Eur. J. Mech.-A
,
97
, p.
104822
.10.1016/j.euromechsol.2022.104822
19.
Geradin
,
M.
, and
Rixen
,
D. J.
,
2015
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
, Hoboken, NJ.
20.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
21.
Touzé
,
C.
,
Vizzaccaro
,
A.
, and
Thomas
,
O.
,
2021
, “
Model Order Reduction Methods for Geometrically Nonlinear Structures: A Review of Nonlinear Techniques
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1141
1190
.10.1007/s11071-021-06693-9
22.
Vizzaccaro
,
A.
,
Shen
,
Y.
,
Salles
,
L.
,
Blahoš
,
J.
, and
Touzé
,
C.
,
2021
, “
Direct Computation of Nonlinear Mapping Via Normal Form for Reduced-Order Models of Finite Element Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113957
.10.1016/j.cma.2021.113957
23.
Quaegebeur
,
S.
,
Di Palma
,
N.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2022
, “
Exploiting Internal Resonances in Nonlinear Structures With Cyclic Symmetry as a Mean of Passive Vibration Control
,”
Mech. Syst. Signal Process.
,
178
, p.
109232
.10.1016/j.ymssp.2022.109232
24.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley VCH
,
New York
.
25.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
26.
Wang
,
S.
,
Zhang
,
Y.
,
Guo
,
W.
,
Pi
,
T.
, and
Li
,
X.
,
2023
, “
Vibration Analysis of Nonlinear Damping Systems by the Discrete Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
111
(
3
), pp.
2009
2028
.10.1007/s11071-022-07953-y
27.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions,”
J. Propul. Power
, 22(2), pp.
384
396
.10.2514/1.16345
28.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbo-Machine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
29.
Martin
,
A.
,
Opreni
,
A.
,
Vizzaccaro
,
A.
,
Debeurre
,
M.
,
Salles
,
L.
,
Frangi
,
A.
,
Thomas
,
O.
, and
Touzé
,
C.
,
2023
, “
Reduced-Order Modeling of Geometrically Nonlinear Rotating Structures Using the Direct Parametrisation of Invariant Manifolds
,”
J. Theor., Comput. Appl. Mech.
, epub.10.46298/jtcam.10430
You do not currently have access to this content.