Abstract

The cross-impingement phenomenon always appears in several diesel engines with two or more injectors. Meanwhile, the application of biofuels has a great potential in realizing clean and efficient combustion. Therefore, the investigation aims to explore the cross-impingement characteristics at small (10%), middle (30%), and large (50%) biodiesel-butanol blended proportions. Experiments are conducted in a constant-volume combustion chamber with twin injectors. Spray images are captured by optical diagnosis techniques. Several macroscopic parameters are obtained, including diffusion length, collision width, and spray area. Results show that the cross-impingement accelerates the droplet interaction, and the spray presents a “fan-shaped” behavior after the collision, which promotes a more uniform mixing between the fuel and ambient gas. As the twin sprays collide at 120 deg, the vapor-phase vertical diffusion rate is close to the vertical component of the single spray, and the horizontal diffusion rate is about 1.2 times the vertical diffusion rate. The cross-impingement is likely to decrease the spray-wall impingement owing to a change in the diffusion direction. At various blended fuels, the biodiesel blended with 30% n-butanol displays the smallest liquid-phase diffusion length, width, and area. The further increase in the n-butanol mixing ratio leads to larger liquid-phase parameters. Contrary to the biodiesel blended with 10% n-butanol, the biodiesel blended with a higher proportion of n-butanol presents faster vapor-phase diffusion, which promotes fuel-gas mixing.

References

1.
Suh
,
H. K.
,
Roh
,
H. G.
, and
Lee
,
C. S.
,
2008
, “
Spray and Combustion Characteristics of Biodiesel/Diesel Blended Fuel in a Direct Injection Common-Rail Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032807
.10.1115/1.2835354
2.
Suh
,
H. K.
, and
Lee
,
C. S.
,
2016
, “
A Review on Atomization and Exhaust Emissions of a Biodiesel-Fueled Compression Ignition Engine
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1601
1620
.10.1016/j.rser.2015.12.329
3.
Jiménez-Espadafor
,
F. J.
,
Torres
,
M.
,
Velez
,
J. A.
,
Carvajal
,
E.
, and
Becerra
,
J. A.
,
2012
, “
Experimental Analysis of Low Temperature Combustion Mode With Diesel and Biodiesel Fuels: A Method for Reducing NOx and Soot Emissions
,”
Fuel Process. Technol.
,
103
, pp.
57
63
.10.1016/j.fuproc.2011.11.014
4.
Sukjit
,
E.
,
Herreros
,
J. M.
,
Dearn
,
K. D.
,
Tsolakis
,
A.
, and
Theinnoi
,
K.
,
2013
, “
Effect of Hydrogen on Butanol-Biodiesel Blends in Compression Ignition Engines
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1624
1635
.10.1016/j.ijhydene.2012.11.061
5.
Yi
,
B.
,
Fu
,
W.
,
Song
,
L.
,
Li
,
F.
,
Liu
,
T.
, and
Lin
,
Q.
,
2019
, “
Experimental Study of the Effect of N-Butanol Additive on Spray Characteristics of Biodiesel in a High-Pressure Common-Rail Injection System
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
2
), pp.
211
220
.10.1177/0957650918784694
6.
Huang
,
Y.
,
Li
,
Y.
,
Luo
,
K.
, and
Wang
,
J.
,
2020
, “
Biodiesel/Butanol Blends as a Pure Biofuel Excluding Fossil Fuels: Effects on Diesel Engine Combustion, Performance, and Emission Characteristics
,”
Proc. Inst. Mech. Eng., Part D
,
234
(
13
), pp.
2988
3000
.10.1177/0954407020916989
7.
Zhang
,
Q.
,
Xia
,
J.
,
Wang
,
J.
,
He
,
Z.
,
Zhao
,
W.
,
Qian
,
Y.
,
Zheng
,
L.
,
Liu
,
R.
, and
Lu
,
X.
,
2022
, “
Experimental Investigation on Spray Evaporation and Dispersion Characteristics of Impinged Biodiesel-Butanol Blends
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071001
.10.1115/1.4054477
8.
Zhu
,
Y.
,
Chen
,
Z.
, and
Liu
,
J.
,
2014
, “
Emission, Efficiency, and Influence in a Diesel n-Butanol Dual-Injection Engine
,”
Energy Convers. Manage.
,
87
, pp.
385
391
.10.1016/j.enconman.2014.07.028
9.
Nayyar
,
A.
,
Sharma
,
D.
,
Soni
,
S. L.
, and
Mathur
,
A.
,
2017
, “
Characterization of N-Butanol Diesel Blends on a Small Size Variable Compression Ratio Diesel Engine: Modeling and Experimental Investigation
,”
Energy Convers. Manage.
,
150
, pp.
242
258
.10.1016/j.enconman.2017.08.031
10.
Balamurugan
,
T.
, and
Nalini
,
R.
,
2014
, “
Experimental Investigation on Performance, Combustion and Emission Characteristics of Four Stroke Diesel Engine Using Diesel Blended With Alcohol as Fuel
,”
Energy
,
78
, pp.
356
363
.10.1016/j.energy.2014.10.020
11.
Dempsey
,
A. B.
,
Walker
,
N. R.
,
Gingrich
,
E.
, and
Reitz
,
R. D.
,
2014
, “
Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines With a Focus on Controllability
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
210
241
.10.1080/00102202.2013.858137
12.
Wissink
,
M. L.
,
Curran
,
S. J.
,
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Spray-Wall Interactions in a Small-Bore, Multicylinder Engine Operating With Reactivity-Controlled Compression Ignition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092808
.10.1115/1.4039817
13.
Ko
,
G. H.
,
Lee
,
S. H.
,
Hong
,
S. R.
, and
Choi
,
Y. K.
,
2003
, “
Development and Assessment of a Hybrid Droplet Collision Model for Two Impinging Sprays
,”
Atomization Sprays
,
13
(
2–3
), pp.
251
272
.10.1615/AtomizSpr.v13.i23.60
14.
Avulapati
,
M. M.
, and
Venkata
,
R. R.
,
2013
, “
Experimental Studies on Air-Assisted Impinging Jet Atomization
,”
Int. J. Multiphase Flow
,
57
, pp.
88
101
.10.1016/j.ijmultiphaseflow.2013.07.007
15.
Zhang
,
Z.
, and
Zhang
,
P.
,
2018
, “
Cross-Impingement and Combustion of Sprays in High-Pressure Chamber and Opposed-Piston Compression Ignition Engine
,”
Appl. Therm. Eng.
,
144
, pp.
137
146
.10.1016/j.applthermaleng.2018.08.038
16.
Zhang
,
Z.
,
Zhang
,
P.
, and
Zhao
,
Z.
,
2017
, “
Spray Impingement and Combustion in a Model Opposed-Piston Compression Ignition Engine
,”
Combust. Sci. Technol.
,
189
(
11
), pp.
1943
1965
.10.1080/00102202.2017.1340278
17.
Valladolid
,
P. G.
,
Tunestål
,
P.
,
Monsalve-Serrano
,
J.
,
García
,
A.
, and
Hyvönen
,
J.
,
2017
, “
Impact of Diesel Pilot Distribution on the Ignition Process of a Dual Fuel Medium Speed Marine Engine
,”
Energy Convers. Manage.
,
149
, pp.
192
205
.10.1016/j.enconman.2017.07.023
18.
Zhang
,
Y.
,
Zhao
,
W.
,
Wu
,
H.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2022
, “
Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082104
.10.1115/1.4052910
19.
Etzold
,
M.
,
Betz
,
G.
, and
Durst
,
F.
,
2018
, “
Twin-Jet Spray and Drop-Impingement Spray Injectors for Engine Applications
,”
MTZ Worldwide
,
79
(
12
), pp.
54
59
.10.1007/s38313-018-0109-2
20.
Lim
,
J. H.
, and
Reitz
,
R. D.
,
2014
, “
High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101514
.10.1115/1.4027361
21.
Lee
,
S. H.
,
Ko
,
G. H.
, and
Ryou
,
H. S.
,
2002
, “
A Numerical Study on the Spray-to-Spray Impingement System
,”
KSME Int. J.
,
16
(
2
), pp.
235
245
.10.1007/BF03185175
22.
Zhao
,
L.
,
Moiz
,
A. A.
,
Naber
,
J.
,
Lee
,
S. Y.
,
Barros
,
S.
, and
Atkinson
,
W.
,
2015
, “
High-Speed Spray-to-Spray Collision Study on Two-Hole Impinging Jet Nozzles
,”
SAE
Technical Paper No. 2015-01-0948. 10.4271/2015-01-0948
23.
Ghasemi
,
A.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2014
, “
Spray-Induced Air Motion in Single and Twin Ultra-High Injection Diesel Sprays
,”
Fuel
,
121
, pp.
284
297
.10.1016/j.fuel.2013.12.041
24.
Kim
,
S.
,
Lee
,
D. J.
, and
Lee
,
C. S.
,
2009
, “
Modeling of Binary Droplet Collisions for Application to Inter-Impingement Sprays
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
533
549
.10.1016/j.ijmultiphaseflow.2009.02.010
25.
Lu
,
Y.
,
Zhao
,
C.
,
Zhang
,
Z.
,
Zuo
,
Z.
, and
Lv
,
W.
,
2019
, “
Numerical Simulation of Impinging Spray Characteristics Under High Ambient Pressures With an Improved Droplet Collision Model
,”
Fuel
,
251
, pp.
106
117
.10.1016/j.fuel.2019.04.042
26.
Ko
,
G. H.
, and
Ryou
,
H. S.
,
2005
, “
Droplet Collision Processes in an Inter-Spray Impingement System
,”
J. Aerosol Sci.
,
36
(
11
), pp.
1300
1321
.10.1016/j.jaerosci.2005.02.005
27.
Chen
,
R. H.
,
2007
, “
Diesel-Diesel and Diesel-Ethanol Drop Collisions
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
604
610
.10.1016/j.applthermaleng.2006.05.025
28.
Solomatin
,
Y.
,
Shlegel
,
N. E.
, and
Strizhak
,
P. A.
,
2019
, “
Atomization of Promising Multicomponent Fuel Droplets by Their Collisions
,”
Fuel
,
255
, p.
115751
.10.1016/j.fuel.2019.115751
29.
Akagawa
,
H.
,
Miyamoto
,
T.
,
Harada
,
A.
,
Sasaki
,
S.
,
Shimazaki
,
N.
,
Hashizume
,
T.
, and
Tsujimura
,
K.
,
1999
, “
Approaches to Solve Problems of the Premixed Lean Diesel Combustion
,”
SAE
Technical Paper No. 1999-01-0183. 10.4271/1999-01-0183
30.
Settles
,
G. S.
, and
Hargather
,
M. J.
,
2017
, “
A Review of Recent Developments in Schlieren and Shadowgraph Techniques
,”
Meas. Sci. Technol.
,
28
(
4
), p.
042001
.10.1088/1361-6501/aa5748
31.
Xia
,
J.
,
Zhang
,
Q.
,
Huang
,
Z.
,
Ju
,
D.
, and
Lu
,
X.
,
2020
, “
Experimental Study of Injection Characteristics Under Diesel's Sub/Trans/Supercritical Conditions With Various Nozzle Diameters and Injection Pressures
,”
Energy Convers. Manage.
,
215
, p.
112949
.10.1016/j.enconman.2020.112949
32.
Xia
,
J.
,
Huang
,
Z.
,
Xu
,
L.
,
Ju
,
D.
, and
Lu
,
X.
,
2019
, “
Experimental Study on Spray and Atomization Characteristics Under Subcritical, Transcritical and Supercritical Conditions of Marine Diesel Engine
,”
Energy Convers. Manage.
,
195
, pp.
958
971
.10.1016/j.enconman.2019.05.080
33.
Zhao
,
W.
,
Zhang
,
Y.
,
Huang
,
G.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2021
, “
Experimental Study of Butanol/Biodiesel Dual-Fuel Combustion in Intelligent Charge Compression Ignition (ICCI) Mode: A Systematic Analysis at Low Load
,”
Fuel
,
287
, p.
119523
.10.1016/j.fuel.2020.119523
34.
Zhang
,
Y.
,
Huang
,
R.
,
Huang
,
Y.
,
Huang
,
S.
,
Zhou
,
P.
,
Chen
,
X.
, and
Qin
,
T.
,
2018
, “
Experimental Study on Combustion Characteristics of an n-Butanol-Biodiesel Droplet
,”
Energy
,
160
, pp.
490
499
.10.1016/j.energy.2018.07.039
35.
Qian
,
J.
, and
Law
,
C. K.
,
1997
, “
Regimes of Coalescence and Separation in Droplet Collision
,”
J. Fluid Mech.
,
331
, pp.
59
80
.10.1017/S0022112096003722
36.
Jiang
,
Y. J.
,
Umemura
,
A.
, and
Law
,
C.
,
1992
, “
An Experimental Investigation on the Collision Behaviour of Hydrocarbon Droplets
,”
J. Fluid Mech.
,
234
, pp.
171
190
.10.1017/S0022112092000740
37.
Zhang
,
Q.
,
Xia
,
J.
,
Wang
,
J.
,
He
,
Z.
,
Zhao
,
W.
,
Qian
,
Y.
,
Zheng
,
L.
,
Liu
,
R.
, and
Lu
,
X.
,
2022
, “
Experimental Study on Spray Diffusion Characteristics at Various Biodiesel-Butanol Blended Ratios and Ambient Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
236
(
5
), pp.
840
852
.10.1177/09576509211069451
38.
Dahms
,
R. N.
, and
Oefelein
,
J. C.
,
2013
, “
On the Transition Between Two-Phase and Single-Phase Interface Dynamics in Multicomponent Fluids at Supercritical Pressures
,”
Phys. Fluids
,
25
(
9
), p.
092103
.10.1063/1.4820346
39.
Kumar
,
N.
, and
Pali
,
H. S.
,
2016
, “
Effects of n-Butanol Blending With Jatropha Methyl Esters on Compression Ignition Engine
,”
Arabian J. Sci. Eng.
,
41
(
11
), pp.
4327
4336
.10.1007/s13369-016-2127-1
40.
Liu
,
H.
,
Huo
,
M.
,
Liu
,
Y.
,
Wang
,
X.
,
Wang
,
H.
,
Yao
,
M.
, and
Lee
,
C. F. F.
,
2014
, “
Time-Resolved Spray, Flame, Soot Quantitative Measurement Fueling n-Butanol and Soybean Biodiesel in a Constant Volume Chamber Under Various Ambient Temperatures
,”
Fuel
,
133
, pp.
317
325
.10.1016/j.fuel.2014.05.038
41.
Desantes
,
J. M.
,
Payri
,
R.
,
García
,
A.
, and
Manin
,
J.
,
2009
, “
Experimental Study of Biodiesel Blends' Effects on Diesel Injection Processes
,”
Energy Fuels
,
23
(
6
), pp.
3227
3235
.10.1021/ef801102w
42.
Elkotb
,
M. M.
,
1982
, “
Fuel Atomization for Spray Modelling
,”
Prog. Energy Combust. Sci.
,
8
(
1
), pp.
61
91
.10.1016/0360-1285(82)90009-0
43.
Çelebi
,
Y.
, and
Aydın
,
H.
,
2018
, “
Investigation of the Effects of Butanol Addition on Safflower Biodiesel Usage as Fuel in a Generator Diesel Engine
,”
Fuel
,
222
, pp.
385
393
.10.1016/j.fuel.2018.02.174
44.
Yi
,
B.
,
Lin
,
Q.
,
Song
,
L.
,
Fu
,
W.
,
Li
,
F.
, and
Liu
,
T.
,
2017
, “
Spray Characteristics of n-Butanol in a High-Pressure Common-Rail Injection System
,”
J. Energy Eng.
,
143
(
5
), pp.
1
7
.10.1061/(ASCE)EY.1943-7897.0000474
45.
Cong
,
H.
,
Qian
,
L.
,
Wang
,
Y.
, and
Lin
,
J.
,
2020
, “
Numerical Simulation of the Collision Behaviors of Binary Unequal-Sized Droplets at High Weber Number
,”
Phys. Fluids
,
32
(
10
), p.
103307
.10.1063/5.0020709
46.
Nilaphai
,
O.
,
Hespel
,
C.
,
Chanchaona
,
S.
, and
Mounaïm-Rousselle
,
C.
,
2018
, “
Spray and Combustion Characterizations of ABE/Dodecane Blend in Comparison to Alcohol/Dodecane Blends at High-Pressure and High-Temperature Conditions
,”
Fuel
,
225
, pp.
542
553
.10.1016/j.fuel.2018.03.184
47.
Zhang
,
Q.
,
Xia
,
J.
,
He
,
Z.
,
Wang
,
J.
,
Liu
,
R.
,
Zheng
,
L.
,
Qian
,
Y.
,
Ju
,
D.
, and
Lu
,
X.
,
2021
, “
Experimental Study on Spray Characteristics of Six-Component Diesel Surrogate Fuel Under Sub/Trans/Supercritical Conditions With Different Injection Pressures
,”
Energy
,
218
, p.
119474
.10.1016/j.energy.2020.119474
48.
Wu
,
Y.
,
Huang
,
R.
,
Lee
,
C. F.
, and
Huang
,
C.
,
2012
, “
Effects of the Exhaust Gas Recirculation Rate and Ambient Gas Temperature on the Spray and Combustion Characteristics of Soybean Biodiesel and Diesel
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
3
), pp.
372
384
.10.1177/0954407011416291
49.
Yilmaz
,
N.
,
Vigil
,
F. M.
,
Benalil
,
K.
,
Davis
,
S. M.
, and
Calva
,
A.
,
2014
, “
Effect of Biodiesel-Butanol Fuel Blends on Emissions and Performance Characteristics of a Diesel Engine
,”
Fuel
,
135
, pp.
46
50
.10.1016/j.fuel.2014.06.022
50.
Yu
,
S.
,
Yin
,
B.
,
Deng
,
W.
,
Jia
,
H.
,
Ye
,
Z.
,
Xu
,
B.
, and
Xu
,
H.
,
2019
, “
An Experimental Comparison of the Elliptical and Circular Nozzles Spray and Mixing Characteristics Under Different Injection Pressures
,”
Fuel
,
236
, pp.
1474
1482
.10.1016/j.fuel.2018.09.118
51.
Li
,
F.
,
Yi
,
B.
,
Song
,
L.
,
Fu
,
W.
,
Liu
,
T.
,
Hu
,
H.
, and
Lin
,
Q.
,
2018
, “
Macroscopic Spray Characteristics of Long-Chain Alcohol-Biodiesel Fuels in a Constant Volume Chamber
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
2
), pp.
195
207
.10.1177/0957650917721336
52.
Park
,
S. H.
,
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Experimental and Numerical Analysis of Spray-Atomization Characteristics of Biodiesel Fuel in Various Fuel and Ambient Temperatures Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
960
970
.10.1016/j.ijheatfluidflow.2009.04.003
53.
Birouk
,
M.
,
2014
, “
A Hydrocarbon Droplet Evaporating in Turbulent Environment at Elevated Ambient Pressure and Temperature
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1295
1308
.10.1080/00102202.2014.934577
54.
Kim
,
H. J.
,
Park
,
S. H.
, and
Lee
,
C. S.
,
2010
, “
A Study on the Macroscopic Spray Behavior and Atomization Characteristics of Biodiesel and Dimethyl Ether Sprays Under Increased Ambient Pressure
,”
Fuel Process. Technol.
,
91
(
3
), pp.
354
363
.10.1016/j.fuproc.2009.11.007
55.
Gimeno
,
J.
,
Bracho
,
G.
,
Martí-Aldaraví
,
P.
, and
Peraza
,
J. E.
,
2016
, “
Experimental Study of the Injection Conditions Influence Over N-Dodecane and Diesel Sprays With Two ECN Single-Hole Nozzles. Part I: Inert Atmosphere
,”
Energy Convers. Manage.
,
126
, pp.
1146
1156
.10.1016/j.enconman.2016.07.077
56.
Yu
,
S.
,
Yin
,
B.
,
Deng
,
W.
,
Jia
,
H.
,
Ye
,
Z.
,
Xu
,
B.
, and
Xu
,
H.
,
2018
, “
Experimental Study on the Spray Characteristics Discharging From Elliptical Diesel Nozzle at Typical Diesel Engine Conditions
,”
Fuel
,
221
, pp.
28
34
.10.1016/j.fuel.2018.02.090
57.
Wu
,
S.
,
Meinhart
,
M.
,
Petersen
,
B.
,
Yi
,
J.
, and
Wooldridge
,
M.
,
2021
, “
Breakup Characteristics of High Speed Liquid Jets From a Single-Hole Injector
,”
Fuel
,
289
, p.
119784
.10.1016/j.fuel.2020.119784
58.
Zhang
,
W.
,
Nishida
,
K.
,
Gao
,
J.
, and
Miura
,
D.
,
2008
, “
An Experimental Study on Flat-Wall-Impinging Spray of Microhole Nozzles Under Ultra-High Injection Pressures
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
9
), pp.
1731
1741
.10.1243/09544070JAUTO858
You do not currently have access to this content.