Abstract

A machine learning (ML) approach is developed to predict the effect of blend repairs on airfoil frequency, modal assurance criterion (MAC), and modal displacement vectors. The method is demonstrated on a transonic research rig compressor rotor airfoil. A parametric definition of blend geometry is developed and shown to be capable of encompassing a large range of blend geometry. This blend repair geometry is used to modify the airfoil surface definition and a mesh morphing process transforms the nominal finite element model (FEM) to the repaired configuration. A multilevel full factorial sampling of the blend repair design space provides training data to a Gaussian stochastic process (GSP) regressor. The frequency and MAC results create a vector of training data for GSP calibration, but the airfoil mode shapes require further mathematical manipulation to avoid creating GSP models for each nodal displacement. This paper develops a method to significantly reduce blended airfoil mode shape emulation cost by transforming the mode shape training data into a reduced basis space using principal component analysis (PCA). The coefficients of this reduced basis are used to train a GSP that can then predict the values for new blended airfoils. The emulated coefficients are used with the reduced basis vectors in a reconstruction of blended airfoil mode shape. Validation data is computed at a full-factorial design that maximizes the distance from training points. It is found that large variations in modal properties from large blend repairs can be accurately emulated with a reasonable number of training points. The reduced basis approach of mode shape variation is shown to more accurately predict MAC variation when compared to direct MAC emulation. The added benefit of having the full modal displacement field also allows determination of other influences such as tip-timing limits and modal force values.

References

1.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
2.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
3.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuend Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
4.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME. J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
5.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME. J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.10.1115/1.4007783
6.
Kurstak
,
E.
,
Wilber
,
R.
, and
D'Souza
,
K.
,
2018
, “
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
,”
ASME. J. Eng. Gas Turbines Power
, 141(
5
), p.
051018
.10.1115/1.4041204
7.
Xia
,
Z. Z.
, and
Tang
,
J. J.
,
2013
, “
Characterization of Dynamic Response of Structures With Uncertainty by Using Gaussian Processes
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051006
.10.1115/1.4023998
8.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
, “
Mistuned Rotor Reduced Order Modeling With Surrogate-Modeled Airfoil Substructures
,”
AIAA
Paper No. AIAA 2017-1600.10.2514/6.2017-1600
9.
Bae
,
H.
,
Boyd
,
I. M.
,
Carper
,
E. B.
, and
Brown
,
J.
,
2019
, “
Accelerated Multifidelity Emulator Modeling for Probabilistic Rotor Response Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121019
.10.1115/1.4045019
10.
Brown
,
J. M.
,
Carper
,
E. B.
,
Beck
,
J. A.
, and
Kaszynski
,
A. A.
,
2019
, “
Emulation of as-Manufactured Transonic Rotor Airfoil Modal Behavior and the Significance of Frequency Veering
,”
ASME
Paper No. GT2019-91670.10.1115/GT2019-91670
11.
Gorelik
,
M.
,
Obayomi
,
J.
,
Slovisky
,
J.
,
Frias
,
D.
,
Swanson
,
H.
,
McFarland
,
J.
,
Enright
,
M.
, and
Riha
,
D.
,
2013
, “
Effect of Manufacturing Variability on Turbine Engine Performance: A Probabilistic Study
,”
ASME
Paper No. GT2013-95145.10.1115/GT2013-95145
12.
Javed
,
A. A.
,
Pecnik
,
R. R.
, and
van Buijtenen
,
J. P.
,
2016
, “
Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112101
.10.1115/1.4033185
13.
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Clark
,
J.
,
2019
, “
Surrogate Modeling of Manufacturing Variation Effects on Unsteady Interactions in a Transonic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032506
.10.1115/1.4041314
14.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Ermini
,
M.
, and
Baldassarre
,
L.
,
2006
, “
Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique
,”
ASME J. Turbomach.
,
128
(
4
), pp.
786
797
.10.1115/1.1579507
15.
Naik
,
P.
,
Lehmayr
,
B.
,
Homeier
,
S.
,
Klaus
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Influence of Turbocharger Turbine Blade Geometry on Vibratory Blade Stresses
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021015
.10.1115/1.4041152
16.
Bunnell
,
S.
,
Thelin
,
C.
,
Gorrell
,
S.
,
Salmon
,
J.
,
Ruoti
,
C.
, and
Hepworth
,
A.
,
2019
, “
Rapid Visualization of Compressor Blade Finite Element Models Using Surrogate Modeling
,”
ASME
Paper No. GT2018-77188.10.1115/GT2018-77188
17.
Beck
,
J. A.
,
Brown
,
J. M.
,
Runyon
,
B.
, and
Scott-Emuakpor
,
O. E.
,
2017
, “
Probabilistic Study of Integrally Bladed Rotor Blends Using Geometric Mistuning Models
,”
AIAA
Paper No. AIAA 2017-0860.10.2514/6.2017-0860
18.
Berger
,
R.
,
Hafele
,
J.
,
Hofmeister
,
B.
, and
Rolfes
,
R.
,
2018
, “
Blend Repair Shape Optimization for Damaged Compressor Blisks
,”
Adv. Struct. Multidiscip. Optim.
,
1
, pp.
1631
1642
.10.1007/978-3-319-67988-4_122
19.
Hanschke
,
B.
,
Klauke
,
T.
, and
Kühhorn
,
A.
,
2017
, “
The Effect of Foreign Object Damage on Compressor Blade High Cycle Fatigue Strength
,”
ASME
Paper No. GT2017-63599.10.1115/GT2017-63599
20.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
21.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Reduced Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME
Paper No. GT2016-57850.10.1115/GT2016-57850
22.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2020
, “
A Statistical Characterization of the Effects and Interactions of Small and Large Mistuning on Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041015
.10.1115/1.4045023
23.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
24.
Hah
,
C.
,
Puterbaugh
,
S. L.
, and
Copenhaver
,
W. W.
,
1997
, “
Unsteady Aerodynamic Flow Phenomena in a Transonic Compressor Stage
,”
J. Propul. Power
,
13
(
3
), pp.
329
333
.10.2514/2.5175
25.
Puterbaugh
,
S. L.
,
Copenhaver
,
W. W.
,
Hah
,
C.
, and
Wennerstrom
,
A. J.
,
1997
, “
A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
119
(
3
), pp.
452
459
.10.1115/1.2841144
You do not currently have access to this content.