Abstract

Rod-fastened rotor is the core rotating section of the heavy-duty gas turbine. To accurately analyze its dynamic characteristics, the contact model for the disk contact interface needs to be defined and established. Traditional statistical contact models, including the elastic model and elastoplastic model, cannot describe microscopic atomic behavior during the contact process of asperities, while the microscopic contact behavior of the asperities is one of the main factors in affecting the contact stiffness of the rough surface. In this work, the molecular dynamics simulation of the microscopic contact behavior of the rough surface is carried out and the semi-analytical model is built upon that. The semi-analytical model is later combined with the Timoshenko beam element in modeling the rotor system. The influence of plasticity index and surface roughness on the contact model and dynamic characteristics of the rotor is analyzed. Moreover, the experimental tests of natural frequencies and mode shapes are carried out. The results show that the proposed semi-analytical contact model is effective and more accurate compared to other elastic and elastic-plastic contact models.

References

1.
Liu
,
Y.
,
Liu
,
H.
, and
Wang
,
N.
,
2016
, “
Effects of Typical Machining Errors on the Nonlinear Dynamic Characteristics of Rod-Fastened Rotor Bearing System
,”
ASME. J. Vib. Acoust.
,
139
(
1
), p.
011004
.10.1115/1.4034768
2.
Liu
,
Y.
,
Liu
,
H.
,
Wang
,
X.
, and
Jing
,
M.
,
2015
, “
Nonlinear Dynamic Characteristics of a Three-Dimensional Rod-Fastening Rotor Bearing System
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
5
), pp.
882
894
.10.1177/0954406214539471
3.
Xia
,
K.
,
Sun
,
Y.
,
Hong
,
D.
,
Guo
,
J.
, and
Kang
,
X.
,
2016
, “
Effects of Contact Interfaces on Rotor Dynamic Characteristics of Heavy-Duty Gas Turbine Generator Set
,”
2016 IEEE International Conference on Mechatronics and Automation
, Harbin, China, Aug. 7–10, pp.
714
719
.10.1109/ICMA.2016.7558650
4.
Lu
,
M.
,
Geng
,
H.
,
Yang
,
B.
, and
Yu
,
L.
,
2010
, “
Finite Element Method for Disc-Rotor Dynamic Characteristics Analysis of Gas Turbine Rotor Considering Contact Effects and Rod Preload
,”
2010 IEEE International Conference on Mechatronics and Automation
, Xi'an, China, Aug. 4–7, pp.
1179
1183
.10.1109/ICMA.2010.5587948
5.
Zhuo
,
M.
,
Yang
,
L. H.
,
Xia
,
K.
, and
Yu
,
L.
,
2019
, “
Thermal Effects on the Tensile Forces of Rods in Rod-Fastened Rotor of Heavy-Duty Gas Turbine
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
233
(
8
), pp.
2753
2762
.10.1177/0954406218791641
6.
Li
,
P.
, and
Yuan
,
Q.
,
2020
, “
Stress Variation of a Gas Turbine Tie-Bolt Rotor With Hirth Serrations Considering Assembling and Thermal Effects
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
24
), pp.
4932
4944
.10.1177/0954406220932602
7.
Liu
,
X.
,
Yuan
,
Q.
,
Liu
,
Y.
, and
Gao
,
J.
,
2014
, “
Analysis of the Stiffness of Hirth Couplings in Rod-Fastened Rotors Based on Experimental Modal Parameter Identification
,”
ASME
Paper No. GT2014-26448.10.1115/GT2014-26448
8.
Hu
,
L.
,
Liu
,
Y.
,
Zhao
,
L.
, and
Zhou
,
C.
,
2016
, “
Nonlinear Dynamic Response of a Rub-Impact Rod Fastening Rotor Considering Nonlinear Contact Characteristic
,”
Archive Appl. Mech.
,
86
(
11
), pp.
1869
1886
.10.1007/s00419-016-1152-6
9.
Wang
,
L.
,
Wang
,
A.
,
Jin
,
M.
,
Huang
,
Q.
, and
Yin
,
Y.
,
2020
, “
Nonlinear Effects of Induced Unbalance in the Rod Fastening Rotor-Bearing System Considering Nonlinear Contact
,”
Archive Appl. Mech.
,
90
(
5
), pp.
917
943
.10.1007/s00419-019-01645-7
10.
Hei
,
D.
,
Lu
,
Y.
,
Zhang
,
Y.
,
Liu
,
F.
,
Zhou
,
C.
, and
Müller
,
N.
,
2015
, “
Nonlinear Dynamic Behaviors of Rod Fastening Rotor-Hydrodynamic Journal Bearing System
,”
Archive Appl. Mech.
,
85
(
7
), pp.
855
875
.10.1007/s00419-015-0996-5
11.
Hu
,
L.
,
Liu
,
Y.
,
Teng
,
W.
, and
Zhou
,
C.
,
2016
, “
Nonlinear Coupled Dynamics of a Rod Fastening Rotor Under Rub-Impact and Initial Permanent Deflection
,”
Energies
,
9
(
11
), p.
883
.10.3390/en9110883
12.
Li
,
Y.
,
Luo
,
Z.
,
Liu
,
Z.
, and
Hou
,
X.
,
2019
, “
Nonlinear Dynamic Behaviors of a Bolted Joint Rotor System Supported by Ball Bearings
,”
Archive Appl. Mech.
,
89
(
11
), pp.
2381
2395
.10.1007/s00419-019-01585-2
13.
Hei
,
D.
, and
Zheng
,
M.
,
2021
, “
Investigation on the Dynamic Behaviors of a Rod Fastening Rotor Based on an Analytical Solution of the Oil Film Force of the Supporting Bearing
,”
J. Low Freq. Noise, Vib. Active Control.
,
40
(
2
), pp.
707
739
.10.1177/1461348420912857
14.
Hu
,
L.
,
Liu
,
Y.
,
Zhao
,
L.
, and
Zhou
,
C.
,
2016
, “
Nonlinear Dynamic Behaviors of Circumferential Rod Fastening Rotor Under Unbalanced Pre-Tightening Force
,”
Archive Appl. Mech.
,
86
(
9
), pp.
1621
1631
.10.1007/s00419-016-1139-3
15.
Li
,
J.
,
Li
,
Y.
,
Zhang
,
F.
,
Feng
,
Y.
, and
Su
,
L.
,
2020
, “
Nonlinear Analysis of Rod Fastened Rotor Under Nonuniform Contact Stiffness
,”
Shock Vib.
,
2020
(
5
), pp.
1
10
.10.1155/2020/8851996
16.
Heng
,
L.
,
2010
, “
Nonlinear Dynamic Analysis of a Flexible Rod Fastening Rotor Bearing System
,”
ASME
Paper No. GT2010-23368.10.1115/GT2010-23368
17.
Liu
,
Y.
,
Liu
,
H.
,
Yi
,
J.
, and
Jing
,
M.
,
2013
, “
Investigation on the Stability and Bifurcation of a Rod-Fastening Rotor Bearing System
,”
J. Vib. Control.
,
21
(
3
), pp.
85
86
.10.1177/1077546313518817
18.
Yi
,
J.
,
Liu
,
H.
,
Liu
,
Y.
, and
Jing
,
M.
,
2015
, “
Global Nonlinear Dynamic Characteristics of Rod-Fastening Rotor Supported by Ball Bearings
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
229
(
2
), pp.
208
222
.10.1177/1464419314557846
19.
Yuan
,
Q.
,
Gao
,
J.
, and
Li
,
P.
,
2014
, “
Nonlinear Dynamics of the Rod-Fastened Jeffcott Rotor
,”
ASME. J. Vib. Acoust.
,
136
(
2
), p.
021011
.10.1115/1.4026241
20.
Zhang
,
Y.
,
Du
,
Z.
,
Shi
,
L.
, and
Liu
,
S.
,
2010
, “
Determination of Contact Stiffness of Rod-Fastened Rotors Based on Modal Test and Finite Element Analysis
,”
ASME. J. Eng. Gas Turbines Power
,
132
(
9
), p.
094501
.10.1115/1.4000591
21.
Gao
,
J.
,
Yuan
,
Q.
,
Li
,
P.
,
Feng
,
Z.
,
Zhang
,
H.
, and
Lv
,
Z.
,
2012
, “
Effects of Bending Moments and Pretightening Forces on the Flexural Stiffness of Contact Interfaces in Rod-Fastened Rotors
,”
ASME. J. Eng. Gas Turbines Power
,
134
(
10
), p.
102503
.10.1115/1.4007026
22.
Zhuo
,
M.
,
Yang
,
L. H.
, and
Yu
,
L.
,
2016
, “
Contact Stiffness Calculation and Effects on Rotordynamic of Rod Fastened Rotor
,”
ASME
Paper No. IMECE2016-66047.10.1115/IMECE2016-66047
23.
Liu
,
Y.
,
Yuan
,
Q.
,
Li
,
P.
, and
Zhu
,
G.
,
2019
, “
Modal Analysis for a Rod-Fastened Rotor Considering Contact Effect Based on Double Fractal Model
,”
Shock Vib.
,
2019
(
2
), pp.
1
10
.10.1155/2019/4027353
24.
Cardoso
,
R. C.
,
2020
, “
Study of Bolted Joint Axial Stiffness Using Finite Element Analyses, Experimental Tests, and Analytical Calculations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
23
), pp.
4671
4681
.10.1177/0954406220927066
25.
Daouk
,
S.
,
Louf
,
F.
,
Cluzel
,
C.
,
Dorival
,
O.
,
Champaney
,
L.
, and
Audebert
,
S.
,.
2017
, “
Study of the Dynamic Behavior of a Bolted Joint Under Heavy Loadings
,”
J. Sound Vib.
,
392
, pp.
307
324
.10.1016/j.jsv.2016.12.047
26.
Mayer
,
M. H.
, and
Gaul
,
L.
,
2007
, “
Segment-to-Segment Contact Elements for Modelling Joint Interfaces in Finite Element Analysis
,”
Mech. Syst. Signal Process
,
21
(
2
), pp.
724
734
.10.1016/j.ymssp.2005.10.006
27.
Mogenier
,
G.
,
Baranger
,
T.
,
Dufour
,
R.
,
Besso
,
F.
, and
Durantay
,
L.
,
2011
, “
Nonlinear Centrifugal Effects on a Prestressed Laminated Rotor
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1466
1491
.10.1016/j.mechmachtheory.2011.05.005
28.
Greenwood
,
J. A.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
29.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
30.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASSME J. Tribol.
,
122
(
1
), pp.
86
93
.10.1115/1.555332
31.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, ” “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.10.1115/1.1490373
32.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.10.1080/10402000308982641
33.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME. J. Tribol.
,
127
(
2
), pp.
343
354
.10.1115/1.1866166
34.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.10.1016/j.triboint.2005.09.001
35.
Markopoulos
,
A. P.
,
Karkalos
,
N. E.
, and
Papazoglou
,
E.-L.
,
2020
, “
Meshless Methods for the Simulation of Machining and Micro-Machining: A Review
,”
Arch. Comput. Methods Eng.
,
27
(
3
), pp.
831
853
.10.1007/s11831-019-09333-z
36.
Hertz
,
H.
,
1882
, “
Über Die Berührung Fester Elastischer Körper (on the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
,
94
, pp.
156
171
. English translation in Miscellaneous Papers by
Hertz
,
H.
(ed.) Jones and Schott, London, UK, Macmillan, 1896).
37.
Xie
,
W.
,
Liu
,
C.
,
Jiang
,
D.
, and
Jin
,
J.
,
2021
, “
Inelastic Contact Behaviors of Nanosized Single-Asperity and Multi-Asperity on α-Fe
,”
Int. J. Mech. Sci.
,
204
(
2021
), p.
106569
.10.1016/j.ijmecsci.2021.106569
38.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Archive: Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
.10.1243/PIME_PROC_1970_185_069_02
You do not currently have access to this content.