Abstract

Gas turbines and aircraft engines are dominated by cyclic operating modes with fatigue-related loads. This may result in the acceleration of damage development on the components. Critical components of turbine blades and disks are exposed to cyclic thermal and mechanical multi-axial fatigue. In this work, planar-biaxial low-cycle-fatigue (LCF) tests are conducted using cruciform specimens at different test temperatures. The influence on the deformation and lifetime behavior of the nickel-base disk alloy Inconel 718 is investigated at selected cyclic proportional loading cases, namely, shear and equi-biaxial. The calculation of the stress and strain distribution of the cruciform specimens from the experimental data is difficult to obtain due to complex geometry and temperature gradients. Therefore, there is a need for finite element (FE) Simulations. A viscoplastic material model is considered to simulate the material behavior subjected to uniaxial and the selected planar-biaxial loading conditions. At first, uniaxial simulation results are compared with the uniaxial experiment results for both batches of IN718. Then, the same material parameters are used for simulating the biaxial loading cases. The prediction of FE simulation results is in good agreement with the experimental LCF test for both shear and equi-biaxial loadings. The equivalent stress amplitude results of the biaxial simulation are compared with the uniaxial results. Furthermore, the lifetime is calculated based on the stabilized cycle from the simulation and by using Crossland and Sines multi-axial stress-based approaches. The Crossland model predicts fatigue life significantly better than the Sines model. Finally, the simulated lifetime results are compared with the experimental lifetime.

References

1.
Guo
,
T. H.
,
Chen
,
P.
, and
Jaw
,
L.
,
2004
, “
Intelligent Life-Extending Controls for Aircraft Engines
,”
AIAA
Paper No. 2004-6468.10.2514/6.2004-6468
2.
Strake
,
J. E. A.
, and
Branco
,
C. A. D. M.
,
1995
, “
Thermal Mechanical Fatigue of Aircraft Engine Materials
,”
Advisory Group for Aerospace Research & Development
, Neuilly-sur-Seine, France, pp.
1
224
. https://apps.dtic.mil/sti/citations/ADA306326
3.
Kulawinski
,
D.
,
2015
, “
Biaxial-Planare Isotherme Und Thermo-Mechanische Ermüdung an Polykristallinen Nickelbasis-Superlegierungen
,”
Doctoral thesis
,
Logos Verlag Berlin GmbH
, Berlin, Germany. https://www.researchgate.net/publication/282010007_Biaxialplanare_isotherme_und_thermo-mechanische_Ermudung_an_polykristallinen_Nickelbasis-Superlegierungen
4.
Kulawinski
,
D.
,
Henkel
,
S.
,
Holländer
,
D.
,
Thiele
,
M.
,
Gampe
,
U.
, and
Biermann
,
H.
,
2014
, “
Fatigue Behavior of the Nickel-Base Superalloy WaspaloyTM Under Proportional Biaxial-Planar Loading at High Temperature
,”
Int. J. Fatigue
,
67
, pp.
212
219
.10.1016/j.ijfatigue.2014.02.005
5.
Itoh
,
T.
,
Sakane
,
M.
,
Hata
,
T.
, and
Hamada
,
N.
,
2006
, “
A Design Procedure for Assessing Low Cycle Fatigue Life Under Proportional and Non-Proportional Loading
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
459
466
.10.1016/j.ijfatigue.2005.08.007
6.
Fournier
,
D.
, and
Pineau
,
A.
,
1977
, “
Low Cycle Fatigue Behavior of Inconel 718 at 298 K and 823 K
,”
Metall. Trans. A
,
8
(
7
), pp.
1095
1105
.10.1007/BF02667395
7.
Issler
,
S.
,
2002
, “
Development of a Concept for Life Prediction of Blade-Disc Connections of Gas Turbines (Originally in German)
,”
Ph.D. thesis
,
University of Stuttgart
, Stuttgart, Germany.10.18419/opus-5842
8.
Wagner
,
M.
, and
Decker
,
M.
,
2015
, “
Simulation of Thermo-Mechanical Deformation Behavior and Lifetime of a Nickel-Base Alloy
,”
Procedia Eng.
,
133
, pp.
272
281
.10.1016/j.proeng.2015.12.671
9.
Seifert
,
T.
,
Hazime
,
R.
, and
Dropps
,
S.
,
2014
, “
TMF Life Prediction of High Temperature Components Made of Cast Iron HiSiMo: Part II: Multiaxial Implementation and Component Assessment
,”
SAE Int. J. Mater. Manuf.
,
7
(
2
), pp.
421
431
.10.4271/2014-01-0905
10.
Kulawinski
,
D.
,
Weidner
,
A.
,
Henkel
,
S.
, and
Biermann
,
H.
,
2015
, “
Isothermal and Thermo-Mechanical Fatigue Behavior of the Nickel Base Superalloy WaspaloyTM Under Uniaxial and Biaxial-Planar Loading
,”
Int. J. Fatigue
,
81
, pp.
21
36
.10.1016/j.ijfatigue.2015.07.020
11.
Itoh
,
T.
,
Sakane
,
M.
, and
Ohnami
,
M.
,
1994
, “
High Temperature Multiaxial Low Cycle Fatigue of Cruciform Specimen
,”
J. Eng. Mater. Technol. Trans. ASME
,
116
(
1
), pp.
90
98
.10.1115/1.2904261
12.
Ramesh Babu
,
H.
,
Böcker
,
M.
,
Raddatz
,
M.
,
Henkel
,
S.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2020
, “
Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures
,”
Int. J. Mech. Mater. Eng.
,
14
(
11
), pp.
460
467
https://publications.waset.org/10011591/simulation-of-lowcycle-fatigue-behaviour-of-nickel-based-alloy-at-elevated-temperatures.
13.
Socie
,
D. F.
,
Kurath
,
P.
, and
Koch
,
J.
,
1989
, “
A Multiaxial Fatigue Damage Parameter
,”
Biaxial Multiaxial Fatigue
, pp.
535
550
.https://katalog.slub-dresden.de/id/0-1088924514
14.
Socie
,
D. F.
, and
Marquis
,
G. B.
,
2000
,
Multiaxial Fatigue
,
Society of Automotive Engineers
,
Warrendale, PA
.
15.
Sahadi
,
J. V.
,
Paynter
,
R. J. H.
,
Nowell
,
D.
,
Pattison
,
S. J.
, and
Fox
,
N.
,
2017
, “
Comparison of Multiaxial Fatigue Parameters Using Biaxial Tests of Waspaloy
,”
Int. J. Fatigue
,
100
, pp.
477
488
.10.1016/j.ijfatigue.2017.01.019
16.
German Institute for Standardization
2015
, “
Heat Resisting Alloy NiCr19Fe19Nb5Mo3 (2.4668)—Non Heat Treated—Forging Stock—A or D ≤ 300 mm (EN 4377:2015)
,” DIN Deutsches Institut für Normung e. V.
17.
ASTM,
2013
, “
Standard Test Methods for Determining Average Grain Size
,”
ASTM, West Conshohocken
, PA, Standard No.
E112-13
. http://www.astm.org/cgi-bin/resolver.cgi?E112-13
18.
Ansys,
2009
, “
Element Reference Manual
,” ANSYS, Canonsburg, PA, p.
1698
. https://www.mm.bme.hu/~gyebro/files/vem/ansys_14_element_reference.pdf
19.
McAndrew
,
A.
,
2004
, “
An Introduction to Digital Image Processing With Matlab Notes for scm2511 Image Processing
,”
Sch. Comput. Sci. Math. Victoria Univ. Technol.
,
264
(
1
), pp.
1
264
. http://share.its.ac.id/pluginfile.php/371/mod_resource/content/1/An_Introduction_To_Digital_Image_Processing_With_Matlab.pdf
20.
ASTM
,
2013
, “
Standard Test Methods for Strain Controlled Fatigue Testing
,” ASTM, West Conshohocken, PA, Standard No. E606, pp.
1
16
. http://www.astm.org/cgi-bin/resolver.cgi?E606E606M-19e1
21.
Dennis
,
J. E.
, Jr.
, and
Schnabel
,
R. B.
,
1996
,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Siam
, Philadelphia, PA.10.1137/1.9781611971200
22.
Ackermann
,
S.
,
Kulawinski
,
D.
,
Henkel
,
S.
, and
Biermann
,
H.
,
2014
, “
Biaxial in-Phase and Out-of-Phase Cyclic Deformation and Fatigue Behavior of an Austenitic TRIP Steel
,”
Int. J. Fatigue
,
67
, pp.
123
133
.10.1016/j.ijfatigue.2014.02.007
23.
Bhowal
,
P.
,
Stolz
,
D.
,
Wusatowska-Sarnek
,
A. M.
, and
Montero
,
R.
,
2008
, “
Surface Effects on Low Cycle Fatigue Behavior in IN718 Alloy
,” Superalloy 2008, The Minerals Metals & Materials Society (TMS), Oct., Champion Pennsylvania, pp. 417–427.10.7449/2008/Superalloys_2008_417_423
24.
Ono
,
Y.
,
Yuri
,
T.
,
Sumiyoshi
,
H.
,
Takeuchi
,
E.
,
Matsuoka
,
S.
, and
Ogata
,
T.
,
2004
, “
High-Cycle Fatigue Properties at Cryogenic Temperatures in Inconel 718 Nickel-Based Superalloy
,”
Mater. Trans.
,
45
(
2
), pp.
342
345
.10.2320/matertrans.45.342
25.
Crossland
,
B.
, 1956, “
Effect of Large Hydrostatic Pressure on the Torsional Fatigue Strength of an Alloy Steel
,” Proc. Int. Conf. on Fatigue of Metals, 138, p.
12
.
26.
Maktouf
,
W.
,
Ammar
,
K.
,
Ben Naceur
,
I.
, and
Saï
,
K.
,
2016
, “
Multiaxial High-Cycle Fatigue Criteria and Life Prediction: Application to Gas Turbine Blade
,”
Int. J. Fatigue
,
92
, pp.
25
35
.10.1016/j.ijfatigue.2016.06.024
27.
Li
,
B.
,
Santos
,
L. T.
, and
Freitas
,
M. D.
,
2001
, “
A Computerized Procedure for Long-Life Fatigue Assessment Under Complex Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
3
), pp.
165
177
.10.1046/j.1460-2695.2001.00389.x
28.
Papadopoulos
,
I. V.
,
1998
, “
Critical Plane Approaches in High-Cycle Fatigue: On the Definition of the Amplitude and Mean Value of the Shear Stress Acting on the Critical Plane
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
3
), pp.
269
285
.10.1046/j.1460-2695.1998.00459.x
29.
Karpanan
,
K.
, and
Thomas
,
W.
,
2015
, “
ASME SEC VIII Div 3 Fatigue Life Predictions Using Critical Plane Approach
,”
ASME
Paper No. PVP2015-45045.10.1115/P VP2015-45045
30.
Karpanan
,
K.
,
2016
, “
Critical Plane Search Method for Biaxial and Multiaxial Fatigue Analysis
,”
ASME
Paper No. PVP2016-63705.10.1115/P VP2016-63705
31.
Aid
,
A.
,
Bendouba
,
M.
,
Aminallah
,
L.
,
Amrouche
,
A.
,
Benseddiq
,
N.
, and
Benguediab
,
M.
,
2012
, “
An Equivalent Stress Process for Fatigue Life Estimation Under Multiaxial Loadings Based on a New Non Linear Damage Model
,”
Mater. Sci. Eng. A
,
538
, pp.
20
27
.10.1016/j.msea.2011.12.105
32.
Sines
,
G.
, and
Ohgi
,
G.
,
1981
, “
Fatigue Criteria Under Combined Stresses or Strains
,”
J. Eng. Mater. Technol. Trans. ASME
,
103
(
2
), pp.
82
90
.10.1115/1.3224995
You do not currently have access to this content.