Abstract

Dynamic compressors operating region is mainly constrained by fluid-dynamic instabilities occurring at low mass flowrate conditions, such as surge and rotating stall. This work presents a vibro-acoustic experimental investigation on a centrifugal compressor of an automotive turbocharger aimed to identify and confirm some surge precursor values in correspondence of its inception conditions. The experimental campaign was carried out at the University of Genoa and developed on a vaneless diffuser turbocharger exploited for the pressurization of an innovative solid oxide fuel cell (SOFC) emulator. The investigated turbocharger is coupled with a pressure vessel for a former emulation activity on a pressurized SOFC. In this kind of plants, the joint effect of large volume size downstream of the compressor makes more complex the dynamic behavior of the whole system during transients, thus significantly increasing surge onset risk. The activity or the main goal is to obtain a suitable quantitative indicator capable to detect in advance surge inception by relying only on vibrational and acoustic system response. Several transient operations starting from a compressor stable condition to surge instability onset were performed at different initial rotating speeds by progressively closing specific valves in the air line. When moving close to the surge line, vibro acoustic signals were acquired at a high sampling rate to detect variations in compressor blade passage phenomena due to possible interactions with rotating stall inception. Meanwhile, the trend of pressures, temperatures, and mass flow rates measured in specific plant sections were acquired at a lower sampling rate to obtain a link between the compressor vibro-acoustic and performance behavior. Cyclostationary analysis and several postprocessing methods in time, angle, and frequency domains were performed on microphone and accelerometer acquired signals to provide innovative diagnostic and predictive solutions (precursors) able to warn the incoming of surge compressor instability with cheap and not intrusive sensors like microphones and accelerometers.

References

1.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
2.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis—Part I: Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.10.1115/1.2841315
3.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High Speed Centrifugal Compressors With Vaneless Diffuser—Part I: Flow Structure Analysis
,”
ASME
Paper No. GT2020-14579.
4.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High Speed Centrifugal Compressors With Vaneless Diffuser—Part II: The Development of Prediction Criteria
,”
ASME
Paper No. GT2020-14589.
5.
Biliotti
,
D.
,
Bianchini
,
A.
,
Vannini
,
G.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Analysis of the Rotor Dynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p.
021002
.10.1115/1.4028246
6.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME
Paper No. GT2016-57168.
7.
Kabral
,
R.
, and
Åbom
,
M.
,
2018
, “
Investigation of Turbocharger Compressor surge Inception by Means of an Acoustic Two-Port Model
,”
J. Sound Vib.
,
412
, pp.
270
286
.10.1016/j.jsv.2017.10.003
8.
Reggio
,
F.
,
Ferrari
,
M. L.
,
Silvestri
,
P.
, and
Massardo
,
A. F.
,
2019
, “
Vibrational Analysis for Surge Precursor Definition in Gas Turbines
,”
Meccanica
,
54
(
8
), pp.
1257
1278
.10.1007/s11012-019-01016-0
9.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
10.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.10.1115/1.1771686
11.
Zhenzhong
,
S.
,
Wangzhi
,
Z.
, and
Xinqian
,
Z.
,
2018
, “
Instability Detection of Centrifugal Compressors by Means of Acoustic Measurements
,”
Aerosp. Science and Technol.
,
82–83
, pp.
628
635
.10.1016/j.ast.2018.09.006
12.
Dehner
,
R.
,
Figurella
,
N.
,
Selamet
,
A.
,
Keller
,
P.
,
Becker
,
M.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2013
, “
Instabilities at the Low-Flow Range of a Turbocharger Compressor
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1356
1367
.10.4271/2013-01-1886
13.
Marelli
,
S.
,
Silvestri
,
P.
,
Usai
,
V.
, and
Capobianco
,
M.
,
2019
, “
Incipient Surge Detection in Automotive Turbocharger Compressors
,”
SAE
Paper No. 2019-24-0186.10.1115/2019-24-0186
14.
Silvestri
,
P.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2021
, “
Incipient Surge Analysis in Time and Frequency Domain for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101020
.10.1115/1.4051956
15.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2021
, “
Incipient Surge Detection in Large Volume Energy Systems Based on Wigner-Ville Distribution Evaluated on Vibration Signals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071014
.10.1115/1.4049855
16.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Abrassi
,
A.
,
2019
, “
Test Rig for Emulation of Turbocharged SOFC Plants
,”
E3S Web Conf.
,
113
, p.
02001
.10.1051/e3sconf/201911302001
17.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021701
.10.1115/1.4037754
18.
Antoni
,
J.
,
Ducleaux
,
N.
,
NGhiem
,
G.
, and
Wang
,
S.
,
2013
, “
Separation of Combustion Noise in IC Engines Under Cyclo-Non-Stationary Regime
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
223
236
.10.1016/j.ymssp.2013.02.015
19.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
987
1036
.10.1016/j.ymssp.2008.10.010
20.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis in Practice
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
597
630
.10.1016/j.ymssp.2006.08.007
21.
Holmes
,
R.
,
Brennan
,
M. J.
, and
Gottrand
,
B.
,
2004
, “
Vibration of an Automotive Turbocharger—A Case Study
,”
Proceedings of the Eighth International Conference on Vibrations in Rotating Machinery
, Swansea, UK, Sept. 7–9, pp.
445
450
.https://eprints.soton.ac.uk/28117/
22.
Tanaka
,
M.
,
Hatakenaka
,
K.
, and
Suzuki
,
K.
,
2002
, “
A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered
,”
ASME J. Tribol.
,
124
(
3
), pp.
494
505
.10.1115/1.1454104
23.
Abboud
,
D.
,
Baudin
,
S.
,
Antoni
,
J.
,
Rémond
,
D.
,
Eltabach
,
M.
, and
Sauvage
,
O.
,
2016
, “
The Spectral Analysis of Cyclo-Non-Stationarity Signals
,”
Mech. Syst. Signal Process.
,
75
, pp.
280
300
.10.1016/j.ymssp.2015.09.034
24.
Gryllias
,
K.
,
Moschini
,
S.
, and
Antoni
,
J.
,
2017
, “
Application of Cyclo-Non-Stationary Indicators for Bearing Monitoring Under Varying Operating Conditions
,”
ASME
Paper No. GT2017-64443.10.1115/GT2017-64443
25.
Gardner
,
W.
,
Napolitano
,
A.
, and
Paura
,
L.
,
2006
, “
Cyclostationarity: Half a Century of Research
,”
Signal Process.
,
86
(
4
), pp.
639
697
.10.1016/j.sigpro.2005.06.016
You do not currently have access to this content.