Abstract

Rim seals are fitted at the periphery of the stator and rotor disks to reduce the adverse effects of hot gas ingress on highly stressed turbine components limited by temperature. Ingress is induced by rotational effects such as disk pumping, as well as by asymmetric pressure-driven unsteady phenomena. These influences superpose to form a complex flow-physics problem that is a challenge for computational fluid dynamics. Engine designers typically use practical low-order models that require empirical validation and correlating parameters. This paper identifies the swirl ratio in the mainstream annulus as a dominant characterizing parameter to predict ingress. This is a new interpretation that is supported by extending a low-order model based on turbulent transport using an effective eddy mixing length based on the difference in swirl between the annulus and seal clearance. Experimental measurements were made using a 1.5-stage turbine rig at low Reynolds number. The influence of annulus swirl ratio was investigated over a range of flow conditions and two rim-seal geometries, with the ingress quantified using CO2 tracer concentration in the sealing flow. The concentration data were complemented by measurements in the annulus using a five-hole aerodynamic probe.

References

1.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
2.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals. Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
3.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals. Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
4.
Johnson
,
B. V.
,
Wang
,
C. Z.
, and
Roy
,
R.
,
2008
, “
A Rim Seal Orifice Model With Two CDs and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
5.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
6.
Graber
,
D.
,
Daniels
,
W.
, and
Johnson
,
B.
,
1987
, “Disk Pumping Test,” Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, Report No.
AFWAL-TR-87-2050
. https://apps.dtic.mil/sti/pdfs/ADA187199.pdf
7.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
ASME
Paper No. GT2017- 63531.10.1115/GT2017- 63531
8.
Massey
,
B. S.
,
1989
,
Mechanics of Fluids
, 6th ed.,
Oxford University Press
, Oxford, UK.
9.
Ko
,
S. H.
, and
Rhode
,
D. L.
,
1992
, “
Thermal Details in a Rotor–Stator Cavity at Engine Conditions With a Mainstream
,”
ASME J. Turbomach.
,
114
(
2
), pp.
446
453
.10.1115/1.2929164
10.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.10.1115/GT2009-59965
11.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J. W.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
12.
Graikos
,
D.
,
Carnevale
,
M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2021
, “
Influence of Flow Coefficient on Ingress Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111010
.10.1115/1.4051912
13.
Mirzamoghadam
,
A. V.
,
Heitland
,
G.
, and
Molla-Hosseini
,
K.
,
2014
, “
The Effect of Annulus Performance Parameters on Rotor-Stator Cavity Sealing Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031013
.10.1115/1.4026963
14.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
228
(
5
), pp.
491
507
.10.1177/0957650914527273
15.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2017
, “
Measurements and Modelling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbine Power
,
139
(
1
), p.
012603
.10.1115/1.4034240
16.
Palermo
,
D. M.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2019
, “
Effect of Annulus Flow Conditions on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2019-90489.10.1115/GT2019-90489
17.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbine Power
,
142
(
2
), p.
021020
.10.1115/1.4045149
18.
Smith
,
L. H.
, Jr.
,
1966
, “
Wake Dispersion in Turbomachines
,”
J. Basic Eng.
,
88
(
3
), pp.
688
690
.10.1115/1.3645942
You do not currently have access to this content.