Abstract

In future electrified aircraft, multispool more electric engines (MEEs) are expected to be equipped with electric generators connected to each shaft for power offtake and supplying onboard electrical loads. These can be interfaced to a common high-voltage DC bus architecture via power electronic converters. Such system architecture enables the establishment of an “electrical bridge” to circulate the desired amount of power between the engine shafts, and decouple their speeds. This paper introduces the possible benefits from the electric power transfer (EPT) for engine performance and scrutinizes a novel EPT-adopted design (EPTAD) for future MEEs. For this purpose, a zero-dimensional (0D) engine model has been developed by using the intercomponent-volume (ICV) method. By using the engine model, the CFM56-3 engine is redesigned to realize the EPTAD. Comparing the simulation results for the EPTAD and baseline CFM56-3 engines shows significant improvement for engine performance in terms of specific fuel consumption (SFC) and surge margin (SM), mainly at cruise (CR) condition. Results show that almost 3.2% and 2.2% of fuel burn reduction is achieved for the short- and medium-haul flights, respectively, with a 1150 kW EPT system. It is also shown that variable bleed valves (VBVs) can be eliminated in the EPTAD engine with a 1150 kW EPT system.

References

1.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
2.
Pluijms
,
A.
,
Schmidt
,
K. J.
,
Stastny
,
K.
, and
Chibisov
,
B.
, “
Performance Comparison of More Electric Engine Configurations
,”
ASME
Paper No. GT2008-50758.10.1115/GT2008-50758
3.
Speak
,
T. H.
,
Sellick
,
R. J.
,
Kloos
,
V.
, and
Jeschke
,
P.
,
2016
, “
Dual Drive Booster for a Two-Spool Turbofan: Performance Effects and Mechanical Feasibility
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022603
.10.1115/1.4031274
4.
Kloos
,
V.
,
Speak
,
T. H.
,
Sellick
,
R. J.
, and
Jeschke
,
P.
,
2018
, “
Dual Drive Booster for a Two-Spool Turbofan: High Shaft Power Offtake Capability for MEA and Hybrid Aircraft Concepts
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121201
.10.1115/1.4040822
5.
Kreuzer
,
S.
, and
Niehuis
,
R.
,
2017
, “
Commissioning of Split Power Offtake on a Twin-Spool More Electric Engine Demonstrator
,”
ASME
Paper No. GT2017-63320.
10.1115/GT2017-63320
6.
Turunen
,
W. A.
, and
Collman
,
J. S.
,
1966
, “
The General Motors Research GT-309 Gas Turbine Engine
,”
SAE Trans.
,
74
, pp.
357
377
.10.4271/650714
7.
Enalou
,
H. B.
, and
Bozhko
,
S.
,
2020
, “
Performance Improvement of Turbofans by Electric Power Transfer
,”
ASME J. Turbomach.
,
142
(
11
), p.
111002
.10.1115/1.4047892
8.
Enalou
,
H. B.
,
Le-Peuvedic
,
J.-M.
,
Rashed
,
M.
, and
Bozhko
,
S.
,
2018
, “
Potential Improvements in Turbofan's Performance by Electric Power Transfer
,”
SAE
Paper No. 2018-01-1962.10.4271/2018-01-1962
9.
Fawke
,
A. J.
,
Saravanamuttoo
,
H. I. H.
, and
Holmes
,
M.
,
1972
, “
Experimental Verification of a Digital Computer Simulation Method for Predicting Gas Turbine Dynamic Behaviour
,”
Proc. Inst. Mech. Eng.
,
186
(
1
), pp.
323
329
.10.1243/PIME_PROC_1972_186_035_02
10.
Enalou
,
H. B.
,
Soreshjani
,
E. A.
,
Rashed
,
M.
,
Yeoh
,
S. S.
, and
Bozhko
,
S.
,
2017
, “
A Detailed Modular Governor-Turbine Model for Multiple-Spool Gas Turbine With Scrutiny of Bleeding Effect
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), pp.
114501
114507
.10.1115/1.4036947
11.
Enalou
,
H. B.
,
Lang
,
X.
,
Rashed
,
M.
, and
Bozhko
,
S.
,
2020
, “
Time-Scaled Emulation of Electric Power Transfer in the More Electric Engine
,”
IEEE Trans. Transp. Electrification
,
6
(
4
), pp.
1679
1694
.10.1109/TTE.2020.2999400
12.
Lang
,
X.
,
Yang
,
T.
,
Li
,
C.
,
Enalou
,
H. B.
,
Bozhko
,
S.
, and
Wheeler
,
P.
,
2020
, “
A Dual-Channel Enhanced Power Generation Architecture With Back-to-Back Converter for MEA Application
,”
IEEE Trans. Ind. Appl.
,
56
(
3
), pp.
3006
3019
.10.1109/TIA.2020.2974145
13.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
.10.3390/aerospace7040044
14.
Gesell
,
H.
,
Wolters
,
F.
, and
Plohr
,
M.
,
2019
, “
System Analysis of Turbo-Electric and Hybrid-Electric Propulsion Systems on a Regional Aircraft
,”
Aeronaut. J.
,
123
(
1268
), pp.
1602
1617
.10.1017/aer.2019.61
15.
Bozhko
,
S.
,
Yang
,
T.
,
Peuvedic
,
J. L.
,
Arumugam
,
P.
,
Degano
,
M.
,
Rocca
,
A. L.
,
Xu
,
Z.
,
Rashed
,
M.
,
Fernando
,
W.
,
Hill
,
C. I.
,
Eastwick
,
C.
,
Pickering
,
S.
,
Gerada
,
C.
, and
Wheeler
,
P.
,
2018
, “
Development of Aircraft Electric Starter-Generator System Based-On Active Rectification Technology
,”
IEEE Trans. Transp. Electrification
,
4
(
4
), pp.
985
996
.10.1109/TTE.2018.2863031
16.
Enalou
,
H. B.
, and
Bozhko
,
S.
,
2018
, “
Performance Improvement of the CFM56-3 Aircraft Engine by Electric Power Transfer
,”
Paper No.
ETC2019-004
.10.29008/ETC2019-004
17.
Chati
,
Y. S.
, and
Balakrishnan
,
H.
,
2013
, “
Aircraft Engine Performance Study Using Flight Data Recorder Archives
,”
AIAA
Paper No. 2013-4414.10.2514/6.2013-4414
You do not currently have access to this content.