Abstract

Motivated by the urgent need for flexibility and startup capability improvements of conventional power plants in addition to extending their life cycle, General Electric provides its customers with a product to prewarm steam turbines using hot air. In this paper, the transient thermal and structural analyses of a 19-stage intermediate pressure (IP) steam turbine in various startup operating modes are discussed in detail. The presented research is based on previous investigations and utilizes a hybrid finite element method (HFEM—numerical FEM and analytical) approach to efficiently determine the time-dependent temperature distribution in the components of the steam turbine. The simulation strategy of the HFEM model applies various analytical correlations to describe heat transfer in the turbine channel. These are developed by means of extensive unsteady multistage conjugate heat transfer (CHT) simulations for both startup turbine operation with steam and prewarming operation with hot air. Moreover, the complex numerical setup of the HFEM model also considers the thermal contact resistance (TCR) on the surfaces between vane and casing as well as blades and rotor. Prior to the analysis of other turbine startup operating modes, the typical startup turbine process is calculated and validated against an experimental data as a benchmark for subsequent analysis. In addition to heat transfer correlations, the simulation of a turbine startup from cold state uses an innovative analytic pressure model to allow for a consideration of condensation effects during first phase of startup procedure. Finally, the presented thermal investigation focuses on the comparison of transient temperature fields in the turbine for different startup scenarios after prewarming with hot air and provides the subsequent structural investigation with required boundary conditions. As a result, the values of the highest stress are numerically determined and compared to the values obtained by means of cold startup simulation. The final evaluation clearly displays the technical potential and the benefits of the prewarming concept.

References

1.
Spelling
,
J.
,
Jöcker
,
M.
, and
Martin
,
A.
,
2012
, “
Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
013001
.10.1115/1.4004148
2.
Topel
,
M.
,
Genrup
,
M.
,
Jöcker
,
M.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2015
, “
Operational Improvements for Startup Time Reduction in Solar Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042604
.10.1115/1.4028661
3.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021602
.10.1115/1.4025556
4.
Kostenko
,
Y.
, and
Veltmann
,
D.
,
2018
, “
Development of Hot Standby Mode for Flexible Steam Turbine Operation
,”
Proceedings of GPPS Forum 18
, Zürich, Switzerland, Jan. 10-12, Paper No.
GPPS-2018-0020
.https://gpps.global/documents/events/zurich18/papers/steam-turbines/GPPS-Zurich18-0020.pdf
5.
Kostenko
,
Y.
,
Veltmann
,
D.
, and
Hecker
,
S.
,
2019
, “
Steam Turbine Hot Standby: Electrical Pre-Heating Solution
,”
ASME
Paper No. GT2019-90464.10.1115/GT2019-90464
6.
Helbig
,
K.
,
Kuehne
,
C.
, and
Mohr
,
W. F. D.
,
2014
, “
A Warming Arrangement for a Steam Turbine in a Power Plant
,” Patent No.
EP2738360A1
.https://patents.google.com/patent/EP2738360A1/en
7.
Toebben
,
D.
,
Luczynski
,
P.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Investigation of Steam Turbine Warm-Keeping by Use of Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111007
.10.1115/1.4044363
8.
Łuczyński
,
P.
,
Toebben
,
D.
,
Pehle
,
L.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Thermo-Structural Analysis of Steam Turbine in Pre-Warming Operation With Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111004
.10.1115/1.4044311
9.
Marinescu
,
G.
, and
Ehrsam
,
A.
,
2012
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Part 2: Natural Cooling of a Steam Turbines and the Impact on LCF Life
,”
ASME
Paper No. GT2012-68759.10.1115/GT2012-68759
10.
Toebben
,
D.
,
Hellmig
,
A.
,
Luczynski
,
P.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Analytical Heat Transfer Correlation for a Multistage Steam Turbine in Warm-Keeping Operation With Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011013
.10.1115/1.4040717
11.
Toebben
,
D.
,
Graaf
,
X. E. R.
,
Luczynski
,
P.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Test Rig for Applied Experimental Investigations of the Thermal Contact Resistance at the Blade-Rotor Connection in a Steam Turbine
,”
ASME J. Turbomach.
,
141
(
2
), p.
021007
.10.1115/1.4041748
12.
Pehle
,
L.
,
Luczynski
,
P.
,
Jeon
,
T.
,
Wirsum
,
M.
,
Mohr
,
W.
, and
Helbig
,
K.
,
2020
, “
Comparison of Steam Turbine Pre-Warming and Warm-Keeping Strategies Using Hot Air for Fast Turbine Start-Up
,”
ASME
Paper No. GT2020-14281.10.1115/GT2020-14281
13.
Marinescu
,
G.
,
Sell
,
M.
,
Ehrsam
,
A.
, and
Brunner
,
P. B.
,
2013
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Part 3: Startup and the Impact on LCF Life
,”
ASME
Paper No. GT2013-94356.10.1115/GT2013-94356
14.
Rzadkowski
,
R.
,
Lampart
,
P.
,
Kwapisz
,
L.
,
Szymaniak
,
M.
, and
Drewczynski
,
M.
,
2010
, “
Transient Thermodynamic, Thermal and Structure Analysis of a Steam Turbine During Its Start-Up
,”
ASME
Paper No. GT2010-22813.10.1115/GT2010-22813
15.
Łuczyński
,
P.
,
Toebben
,
D.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Unsteady Conjugate Heat Transfer Investigation of a Multistage Steam Turbine in Warm-Keeping Operation With Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011005
.10.1115/1.4040823
16.
Luczynski
,
P.
,
Pehle
,
L.
,
Wirsum
,
M.
,
Vogt
,
J.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,
2019
, “
Analytical Heat Transfer Approach for a Multistage Reaction Steam Turbine in Start-Up Operation
,”
IGTC 2019
, Tokyo, Japan, 17–22, Nov., Paper ID016.https://www.ikdg.rwth-aachen.de/cms/ikdg/Forschung/Publikationen/~ocpc/Details/?file=784744&lidx=1
17.
Beer
,
W.
,
Propp
,
L.
, and
Voelker
,
L.
,
2015
, “
A Simplified Analytical Approach for Calculating the Start-Up Time of Industrial Steam Turbines for Optimal and Fast Start-Up Procedures
,”
ASME
Paper No. GT2015-43284.10.1115/GT2015-43284
18.
Wang
,
W. Z.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Liu
,
Y. Z.
,
2016
, “
The Effect of in-Service Steam Temperature Transients on the Damage Behavior of a Steam Turbine Rotor
,”
Int. J. Fatigue
,
87
, pp.
471
483
.10.1016/j.ijfatigue.2016.02.040
19.
Traupel
,
W.
,
1982
,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
20.
Born
,
D.
,
Stein
,
P.
,
Marinescu
,
G.
,
Koch
,
S.
, and
Schumacher
,
D.
,
2016
, “
Thermal Modelling of an Intermediate Pressure Steam Turbine by Means of Conjugate Heat Transfer—Simulation and Validation
,”
ASME
Paper No. GT2016-57247.10.1115/GT2016-57247
You do not currently have access to this content.