Abstract

The aim of this study is to efficiently calculate parametric thermoacoustic maps of typical combustion chambers. Two configurations are considered: an academic configuration based on a Rijke tube, and an industrial combustion chamber, which is the core of a recently developed microturbine for power generation. Such maps can be understood as the collection of loci of thermoacoustic eigenfrequencies obtained under systematic variations of some defined parameters, while considering the Helmholtz equation as the thermoacoustic model of interest. In this study we consider variations on two parameters: the gain n and time-delay τ associated with a generic flame response model. We also show the feasibility of the proposed approach when considering more realistic flame responses. A straight-forward way to calculate such a thermoacoustic map is by solving the Helmholtz equation, and, thus, the corresponding nonlinear eigenvalue problem (NLEVP), one time per parameter combination. With that approach, the nonlinear eigenvalue problem needs to be solved hundreds or thousands of times if an adequate resolution of the thermoacoustic map is sought. Such a strategy may be computationally unaffordable. In order to overcome this difficulty, this work utilizes an adjoint-based, high-order perturbation method. The actual eigenvalue problem is only solved once at a baseline point. After applying the perturbation equations at that point, a polynomial rational function—the Padé approximant—is obtained to estimate the eigenfrequency drift that results for a small or large perturbation in the flame response. It is demonstrated, for both academic and industrial test cases, that the obtained maps are accurate. Additionally, it is shown that these maps reveal a large variety of thermoacoustic features, such as stability boundaries, intrinsic thermoacoustic modes, and exceptional points. The numerical costs for such calculations are negligible even for the industrial combustion chamber investigated.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Progress in Astronautics and Aeronautics,
AIAA
, Vol. 210.10.2514/5.9781600866807.0000.0000
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
3.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
4.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillation
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
5.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Tech.
,
175
(
3
), pp.
453
476
.10.1080/00102200302382
6.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part 1: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
7.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part 2: Low Frequency Instability With Bipropellants. High Frequency Instabilitiy
,”
J. Am. Rocket Soc.
,
22
(
1
), pp.
7
16
.10.2514/8.4410
8.
Külsheimer
,
C.
, and
Büchner
,
H.
,
2002
, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Comb. Flame
,
131
(
1–2
), pp.
70
84
.10.1016/S0010-2180(02)00394-2
9.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
10.
Merk
,
M.
,
Gaudron
,
R.
,
Silva
,
C.
,
Gatti
,
M.
,
Mirat
,
C.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2019
, “
Prediction of Combustion Noise of an Enclosed Flame by Simultaneous Identification of Noise Source and Flame Dynamics
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5263
5270
.10.1016/j.proci.2018.05.124
11.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
12.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011506
.10.1115/1.4000606
13.
Mensah
,
G. A.
,
2019
, “
Efficient Computation of Thermoacoustic Modes
,”
Ph.D. thesis
,
Technische Universität, Berlin
,
Germany
.https://depositonce.tu-berlin.de/bitstream/11303/9942/4/mensah_georg.pdf
14.
Buschmann
,
P. E.
,
Mensah
,
G. A.
,
Nicoud
,
F.
, and
Moeck
,
J. P.
,
2019
, “
Solution of Thermoacoustic Eigenvalue Problems With a Non-Iterative Method
,”
ASME Paper No. GT2019-90834
.10.1115/GT2019-90834
15.
Silva
,
C.
,
Yong
,
K. J.
, and
Magri
,
L.
,
2018
, “
Thermoacoustic Modes of Quasi-One-Dimensional Combustors in the Region of Marginal Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021022
.10.1115/1.4041118
16.
Orchini
,
A.
,
Silva
,
C. F.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2020
, “
Thermoacoustic Modes of Intrinsic and Acoustic Origin and Their Interplay With Exceptional Points
,”
Comb. Flame
,
211
, pp.
83
95
.10.1016/j.combustflame.2019.09.018
17.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Lopez Arteaga
,
I.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
18.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
19.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi-Burner Combustion Systems
,”
ASME Paper No. GT2003-38688
.10.1115/GT2003-38688
20.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2015
, “
Analysis of Azimuthal Thermo-Acoustic Modes in Annular Gas Turbine Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061505
.10.1115/1.4028718
21.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
22.
Rayleigh
,
L.
,
1945
,
The Theory of Sound
,
Dover Publications
,
Macmillan, London
.
23.
Schrödinger
,
E.
,
1926
, “
Quantisierung Als Eigenwertproblem [Quantization as an Eigenvalue Problem]
Annalen Der Phys.
,
385
(
13
), pp.
437
490
.10.1002/andp.19263851302
24.
Mensah
,
G. A.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2020
, “
Perturbation Theory of Nonlinear, Non-Self-Adjoint Eigenvalue Problems: Simple Eigenvalues
,”
J. Sound Vib.
,
473
, p.
115200
.10.1016/j.jsv.2020.115200
25.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.10.1017/jfm.2012.639
26.
Juniper
,
M.
,
Magri
,
L.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2014
, “
Sensitivity Analysis of Thermo-Acoustic Eigenproblems With Adjoint Methods
,”
Proceedings of the Summer Program
, Stanford, CA, July 6–Aug. 1, p.
189
.https://web.stanford.edu/group/ctr/Summer/SP14/06_Combustion/09_juniper.pdf
27.
Magri
,
L.
,
Bauerheim
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors. Part I. Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
395
410
.10.1016/j.jcp.2016.07.032
28.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors. Part II. Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.10.1016/j.jcp.2016.08.043
29.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.10.1115/1.4034203
30.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2016
, “
Assessment of Thermoacoustic Instabilities Based on High-Order Adjoint Perturbation Theory
,”
International Symposium on Thermoacoustic Instabilities in Gas Turbines and Rocket
,
Garching, Germany
. May 20–June 2.http://fd.tu-berlin.de/en/studies-and-courses/seminar-on-fluid-dynamics/talk-single/1463141700-assessment-of-thermoacoustic-instabilities-based-on-high-order-adjoint-perturbation-theory/
31.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Limit Cycles of Spinning Thermoacoustic Modes in Annular Combustors: A Bloch-Wave and Adjoint-Perturbation Approach
,”
ASME Paper No. GT2017-64817
.10.1115/GT2017-64817
32.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.10.1115/1.4035201
33.
Mensah
,
G. A.
,
Magri
,
L.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2019
, “
Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041030
.10.1115/1.4041007
34.
Mensah
,
G. A.
,
Magri
,
L.
,
Silva
,
C. F.
,
Buschmann
,
P. E.
, and
Moeck
,
J. P.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.10.1016/j.jsv.2018.06.069
35.
Polifke
,
W.
,
2019
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p. 1
00845
.https://www.sciencedirect.com/science/article/abs/pii/S0360128519300796
36.
Gopinathan
,
S. M.
,
Iurashev
,
D.
,
Bigongiari
,
A.
, and
Heckl
,
M.
,
2018
, “
Nonlinear Analytical Flame Models With Amplitude-Dependent Time-Lag Distributions
,”
Int. J. Spray Combust. Dyn.
,
10
(
4
), pp.
264
276
.10.1177/1756827717728056
37.
Lancaster
,
P.
,
1961
, “
A Generalised Rayleigh Quotient Iteration for Lambda-Matrices
,”
Arch. Ration. Mech. Anal.
,
8
(
1
), pp.
309
322
.10.1007/BF00277446
38.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p. 061501.10.1115/1.4038156
39.
Silva
,
C. F.
, and
Polifke
,
W.
,
2019
, “
Non-Dimensional Groups for Similarity Analysis of Thermoacoustic Instabilities
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5289
5297
.10.1016/j.proci.2018.06.144
40.
Mukherjee
,
N.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.10.1016/j.combustflame.2017.07.012
41.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
You do not currently have access to this content.