Abstract
Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to the kinetic energy of impacting particles in conjunction with nominal density, matrix hardness, and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.