Abstract

This paper shows signal processing techniques applied to experimental data obtained from a T100 microturbine connected with different volume sizes. This experimental activity was conducted by means of the test rig developed at the University of Genoa for hybrid systems emulation. However, these results can be extended to all advanced cycles in which a microturbine is connected with additional external components which lead to an increase of the plant volume size. Since in this case a 100 kW microturbine was used, the volume was located between the heat recovery unit outlet and the combustor inlet like in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. The main results reported in this paper are related to rotating stall and surge operations. This analysis was carried out to extend the knowledge about these risk conditions: the systems equipped with large volume size connected to the machine present critical issues related to surge and stall prevention, especially during transient operations toward low mass flowrate working conditions. Investigations conducted on acoustic and vibrational measurements can provide interesting diagnostic and predictive solutions by means of suitable instability quantifiers which are extracted from microphone and accelerometer data signals. Hence, different possible tools for rotating stall and incipient surge identification were developed through the use of different signal processing techniques, such as wavelet analysis and higher order statistics analysis (HOSA) methods. Indeed, these advanced techniques are necessary to maximize all the information conveyed by acquired signals, particularly in those environments in which measured physical quantities are hidden by strong noise, including both broadband background one (i.e., typical random noise) but also uninteresting components associated with the signal of interest. For instance, in complex coupled physical systems like the one it is meant to be studied, which do not satisfy the hypothesis of linear and Gaussian processes inside them, it is reasonable to exploit these kinds of tools, instead of the classical fast Fourier transform (FFT) technique by itself, which is mainly adapt for linear systems periodic analysis. The proposed techniques led to the definition of a quantitative indicator, the sum of all autobispectrum components modulus in the subsynchronous range, which was proven to be reliable in predicting unstable operation. This can be used as an input for diagnostic systems for early surge detection. Furthermore, the presented methods will allow the definition of some new features complementary with the ones obtainable from conventional techniques, in order to improve control systems reliability and to avoid false positives.

References

1.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Smart Polygeneration Grids: “Experimental Performance Curves of Different Prime Movers
,”
Appl. Energy
,
162
, pp.
622
630
.10.1016/j.apenergy.2015.10.144
2.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control Using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.10.1016/j.apenergy.2015.12.094
3.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
4.
Hagino
,
N.
,
Uda
,
K.
, and
Kashiwabara
,
Y.
,
2003
, “
Prediction and Active Control of Surge Inception of a Centrifugal Compressor
,” Proceedings of the International Gas Turbine Congress, Tokyo, Japan, Nov. 2–7, Paper No.
TS-038
.https://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts038.pdf
5.
Fanyu
,
L.
, and
Jun
,
L.
,
2016
, “
Stall Warning Approach With Application to Stall Precursor-Suppressed Casing Treatment
,”
ASME
Paper No. GT2016-58172.10.1115/GT2016-58172
6.
Biliotti
,
D.
,
Bianchini
,
A.
,
Vannini
,
G.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Analysis of the Rotor Dynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p.
021002
.10.1115/1.4028246
7.
Bently
,
D. E.
, and
Goldman
,
P.
,
2000
, “
Vibrational Diagnostics of Rotating Stall in Centrifugal Compressors
,”
Orbit
, 21(1), pp.
32
40
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.4820&rep=rep1&type=pdf
8.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021701
.10.1115/1.4037754
9.
Reggio
,
F.
,
Ferrari
,
M. L.
,
Silvestri
,
P.
, and
Massardo
,
A. F.
,
2019
, “
Vibrational Analysis for Surge Precursor Definition in Gas Turbines
,”
Meccanica
,
54
(
8
), pp.
1257
1278
.10.1007/s11012-019-01016-0
10.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2017
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME
Paper No. GT2017-63579.10.1115/GT2017-63579
11.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Surge Prevention for Gas Turbines Connected With Large Volume Size: Experimental Demonstration With a Microturbine
,”
Appl. Energy
, 230, pp.
1057
1064
.10.1016/j.apenergy.2018.09.075
12.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Massardo
,
A. F.
,
Ferrari
,
M. L.
, and
Silvestri
,
P.
,
2019
, “
Surge Prevention in Gas Turbines: An Overview Over Historical Solutions and Perspectives About the Future
,”
E3S Web of Conferences
, Vol.
113
, Savona, Italy, Sept. 4–6, p.
02003
.10.1051/e3sconf/201911302003
13.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-Up and Stress Evaluation: A Simplified Dynamic Approach
,”
Appl. Energy
,
190
, pp.
880
890
.10.1016/j.apenergy.2016.12.141
14.
Carretta
,
M.
,
Cravero
,
C.
, and
Marsano
,
D.
, “
Numerical Prediction of Centrifugal Compressor Stability Limit
,”
ASME
Paper No. GT2017-63352.10.1115/GT2017-63352
15.
Bardelli
,
M.
,
Cravero
,
C.
,
Marini
,
M.
,
Marsan
,
D.
, and
Milingi
,
O.
,
2019
, “
Numerical Investigation of Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor
,”
Appl. Sci.
,
9
(
8
), p.
1619
.10.3390/app9081619
16.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis—Part I: Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.10.1115/1.2841315
17.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME
Paper No. GT2016-57168.10.1115/GT2016-57168
18.
Liśkiewicz
,
G.
,
Horodko
,
L.
,
Stickland
,
M.
, and
Kryłłowicz
,
W.
,
2014
, “
Identification of Phenomena Preceding Blower Surge by Means of Pressure Spectral Maps
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
267
278
.10.1016/j.expthermflusci.2014.01.002
19.
Kabral
,
R.
, and
Åbom
,
M.
,
2018
, “
Investigation of Turbocharger Compressor Surge Inception Bymeans of an Acoustic Two-Port Model
,”
J. Sound Vib.
,
412
, p.
270e
.10.1016/j.jsv.2017.10.003
20.
Marelli
,
S.
,
Misley
,
A.
,
Taylor
,
A.
,
Silviestri
,
P.
,
Capobianco
,
M.
, and
Canova
,
M.
,
2018
, “
Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor
,”
SAE
Paper No. 2018-01-0976.10.4271/2018-01-0976
21.
Marelli
,
S.
,
Silvestri
,
P.
,
Usai
,
V.
, and
Capobianco
,
M.
,
2019
, “
Incipient Surge Detection in Automotive Turbocharger Compressors
,”
SAE
Paper No. 2019-24-0186.10.4271/2019-24-0186
22.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.10.1115/1.1771686
23.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
, “
Acoustic and Vibrational Analyses on a Multi-Stage Compressor for Unstable Behavior Precursor Identification
,”
ASME
Paper No. GT2007-27040.10.1115/GT2007-27040
24.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
25.
Lotfi
,
S.
,
Jaouher
,
B. A.
, and
Fnaiech
,
F.
,
2015
, “
Application of Higher Order Spectral Features and Support Vector Machines for Bearing Faults Classification
,”
ISA Trans.
, 54, pp.
193
206
.10.1016/j.isatra.2014.08.007
26.
Liao
,
S.
, and
Chen
,
J.
,
1996
, “
Time-Frequency Analysis of Compressor Rotating Stall by Means of Wavelet Transform
,”
ASME
Paper No. 96-GT-057.10.1115/96-GT-057
27.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2011
, “
MGT/HTFC Hybrid System Emulator Test Rig: Experimental Investigation on the Anodic Recirculation System
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021012
.10.1115/1.4002316
28.
Lucifredi
,
A.
,
Noceti
,
D.
,
Ferraro
,
A.
,
Silvestri
,
P.
, and
Ortenzio
,
G.
,
2011
, “
Acoustic and Vibrational Characterization for Noise Reduction of a Piaggio P180 Cockpit Blower
,”
Eight International Conference on Condition Monitoring and Machinery Failure Prevention Technologies,
Cardiff, UK, June 20–22, pp.
254
264
.http://hdl.handle.net/11567/263421
29.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
30.
Lucifredi
,
A.
, and
Silvestri
,
P.
,
2003
, “
An Overview of Fundamental Requirements for a Condition Monitoring and Fault Diagnosis System for Machinery and Power Plants
,”
Proceedings of the Tenth International Congress on Sound and Vibration,
Stockholm, Sweden, July 7–10, pp.
4691
4698
.
31.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris' Shock and Vibration Handbook
,
McGraw-Hill
,
New York
.
32.
Vance
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley-Interscience
,
Hoboken, NJ
.
33.
Chui
,
C. K.
,
1994
,
An Introduction to Wavelets
,
Academic Press
,
Cambridge, MA
.
34.
Walnut
,
D. F.
,
2002
,
An Introdution to Wavelet Analysis
,
Birkhäuser
,
Boston, MA
.
35.
Nikias
,
C. L.
, and
Petropulu
,
A.
,
1993
,
Higher-Order Spectra Analysis: A Non Linear Signal Processing Framework
,
Prentice Hall
,
Englewood Cliffs, NJ
.
36.
Mendel
,
J. M.
,
1991
, “
Tutorial on Higher Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications
,”
Proc. IEEE
,
79
(
3
), pp.
278
295
.10.1109/5.75086
37.
Guoji
,
S.
,
Mc Laughlin
,
S.
,
Yongcheng
,
X.
, and
White
,
P.
,
2014
, “
Theoretical and Experimental Analysis of Bispectrum of Vibration Signals for Fault Diagnosis of Gears
,”
Mech. Syst. Signal Process
,
43
(
1–2
), pp.
76
89
.10.1016/j.ymssp.2013.08.023
38.
Buresti
,
G.
, and
Lombardi
,
G.
,
1999
, “
Application of Continuous Wavelet Transforms to the Analysis of Experimental Turbulent Velocity Signals
,”
Turbulence and Shear Flow Phenomena—1
,
S.
Banerjee
,
J. K.
Eaton
, eds.,
Begell House
,
New York
, pp.
767
772
.
39.
Nikias
,
C. L.
, and
Raghuveer
,
M. R.
,
1987
, “
Bispectrum Estimation: A Digital Signal Processing Framework
,”
Proc. IEEE
,
75
(
7
), pp.
869
891
.10.1109/PROC.1987.13824
You do not currently have access to this content.