Single crystal blades used in high pressure turbine bladed disks of modern gas-turbine engines exhibit material anisotropy. In this paper, the sensitivity analysis is performed to quantify the effects of blade material anisotropy orientation on deformation of a mistuned bladed disk under static centrifugal load. For a realistic, high fidelity model of a bladed disk both: (i) linear and (ii) nonlinear friction contact conditions at blade roots and shrouds are considered. The following two kinds of analysis are performed: (i) local sensitivity analysis (LSA), based on first-order derivatives of system response with respect to design parameters, and (ii) statistical analysis using polynomial chaos expansion (PCE). The PCE is used to transfer the uncertainty in random input parameters to uncertainty in static deformation of the bladed disk. An effective strategy, using gradient information, is proposed to address the “curse of dimensionality” problem associated with statistical analysis of realistic bladed disk.

References

1.
Segersll
,
M.
,
Leidermark
,
D.
, and
Moverare
,
J. J.
,
2015
, “
Influence of Crystal Orientation on the Thermomechanical Fatigue Behaviour in a Single-Crystal Superalloy
,”
Mater. Sci. Eng. A
,
623
, pp.
68
77
.
2.
Bounazef
,
M.
,
Guessasma
,
S.
, and
Bedia
,
E. A. A.
,
2007
, “
Blade Protection and Efficiency Preservation of a Turbine by a Sacrificial Material Coating
,”
Adv. Powder Technol.
,
18
(
2
), pp.
123
133
.
3.
Kaneko
,
Y.
,
2011
, “
Study on Vibration Characteristics of Single Crystal Blade and Directionally Solidified Blade
,”
ASME
Paper No. GT2011-45032.
4.
Manetti
,
M.
,
Giovannetti
,
I.
,
Pieroni
,
N.
,
Horculescu
,
H.
,
Peano
,
G.
,
Zonfrillo
,
G.
, and
Giannozzi
,
M.
,
2009
, “
The Dynamic Influence of Crystal Orientation on a Second Generation Single Crystal Material for Turbine Buckets
,”
ASME
Paper No. GT2009-59091.
5.
Wen
,
Z.
,
Mao
,
H.
,
Yue
,
Z.
, and
Wang
,
B.
,
2014
, “
The Influence of Crystal Orientation on Vibration Characteristics of dd6 Nickel-Base Single Crystal Superalloy Turbine Blade
,”
J. Mater. Eng. Perform.
,
23
(
2
), pp.
372
377
.
6.
Savage
,
M.
,
2012
, “
The Influence of Crystal Orientation on the Elastic Stresses of a Single Crystal Nickel-Based Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012501
.
7.
Arakere
,
N.
, and
Swanson
,
G.
,
2002
, “
Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
161
176
.
8.
Weiss
,
T.
,
Voigt
,
M.
,
Schlums
,
H.
,
Mcke
,
R.
,
Becker
,
K.-H.
, and
Vogeler
,
K.
,
2009
, “
Probabilistic Finite-Element Analyses on Turbine Blades
,”
ASME
Paper No. GT2009-59877.
9.
Saltelli
,
A.
, and
Scott
,
M.
,
1997
, “
Guest Editorial: The Role of Sensitivity Analysis in the Corroboration of Models and Its Link to Model Structural and Parametric Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
57
(
1
), pp.
1
4
.
10.
Petrov
,
E.
,
2009
, “
Analysis of Sensitivity and Robustness of Forced Response for Nonlinear Dynamic Structures
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
68
86
.
11.
Petrov
,
E.
,
2008
, “
A Sensitivity-Based Method for Direct Stochastic Analysis of Nonlinear Forced Response for Bladed Disks Wirh Friction Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022503
.
12.
Panunzio
,
A. M.
,
Salles
,
L.
,
Schwingshackl
,
C.
, and
Gola
,
M.
,
2015
, “
Asymptotic Numerical Method and Polynomial Chaos Expansion for the Study of Stochastic Non-Linear Normal Modes
,”
ASME
Paper No. GT2015-43560.
13.
Sinha
,
A.
,
2006
, “
Computation of the Statistics of Forced Response of a Mistuned Bladed Disk Assembly Via Polynomial Chaos
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
449
457
.
14.
Pauw
,
D. J. D.
, and
Vanrolleghem
,
P. A.
,
2006
, “
Practical Aspects of Sensitivity Function Approximation for Dynamic Models
,”
Math. Comput. Modell. Dyn. Syst.
,
12
(
5
), pp.
395
414
.
15.
Hsieh
,
C.
, and
Arora
,
J.
,
1984
, “
Design Sensitivity Analysis and Optimization of Dynamic Response
,”
Comput. Methods Appl. Mech. Eng.
,
43
(
2
), pp.
195
219
.
16.
Brls
,
O.
, and
Eberhard
,
P.
,
2008
, “
Sensitivity Analysis for Dynamic Mechanical Systems With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
74
(
13
), pp.
1897
1927
.
17.
Helton
,
J. C.
,
1993
, “
Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal
,”
Reliab. Eng. Syst. Saf.
,
42
(
2–3
), pp.
327
367
.
18.
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2012
, “
A Variance-Based Sensitivity Index Function for Factor Prioritization
,”
Reliab. Eng. Syst. Saf.
,
107
, pp.
107
114
.
19.
Arregui-Mena
,
J. D.
,
Margetts
,
L.
, and
Mummery
,
P. M.
,
2016
, “
Practical Application of the Stochastic Finite Element Method
,”
Arch. Comput. Methods Eng.
,
23
(
1
), pp.
171
190
.
20.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
Efficient Computation of Global Sensitivity Indices Using Sparse Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
95
(
11
), pp.
1216
1229
.
21.
Mezi
,
I.
, and
Runolfsson
,
T.
,
2008
, “
Uncertainty Propagation in Dynamical Systems
,”
Automatica
,
44
(
12
), pp.
3003
3013
.
22.
West
,
T.
, and
Gumbert
,
C.
,
2017
, “
Multifidelity, Multidisciplinary Design Under Uncertainty With Non-Intrusive Polynomial Chaos
,”
AIAA
Paper No. 2017-1936.
23.
Petrov
,
E.
,
Vitali
,
R.
, and
Haftka
,
R.
,
2000
, “
Optimization of Mistuned Bladed Discs Using Gradient-Based Response Surface Approximations
,”
AIAA
Paper No. 2000-1522.
24.
Roderick
,
O.
,
Anitescu
,
M.
, and
Fischer
,
P.
,
2010
, “
Polynomial Regression Approaches Using Derivative Information for Uncertainty Quantification
,”
Nucl. Sci. Eng.
,
164
(
2
), pp.
122
139
.
25.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
(
Suppl. C
), pp.
46
57
.
26.
Dhondt
,
G.
,
2017
, “
CalculiX CrunchiX User's Manual Version 2.12
,” Munich, Germany, accessed Sept. 21, 2017, http://www.dhondt.de/ccx_2.12.pdf
27.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
(
2
), pp.
259
270
.
28.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.
You do not currently have access to this content.