Lean burn combustion is increasing its popularity in the aeronautical framework due to its potential in reducing drastically pollutant emissions (NOx and soot in particular). Its implementation, however, involves significant issues related to the increased amount of air dedicated to the combustion process, demanding the redesign of injection and cooling systems. Also, the conditions at the combustor exit are a concern, as high turbulence, residual swirl, and the impossibility to adjust the temperature profile with dilution holes determine a harsher environment for nozzle guide vanes. This work describes the final stages of the design of an aeronautical effusion-cooled lean burn combustor. Full annular tests were carried out to measure temperature profiles and emissions (CO and NOx) at the combustor exit. Different operating conditions of the ICAO cycle were tested, considering Idle, Cruise, Approach, and Take-off. Scale-adaptive simulations with the flamelet generated manifold (FGM) combustion model were performed to extend the validation of the employed computational fluid dynamics (CFD) methodology and to reproduce the experimental data in terms of radial temperature distribution factor (RTDF)/overall temperature distribution factor (OTDF) profiles as well as emission indexes (EIs). The satisfactory agreement paved the way to an exploitation of the methodology to provide a deeper understanding of the flow physics within the combustion chamber, highlighting the impact of the different operating conditions on flame, spray evolution, and pollutant formation.

References

1.
ICAO
,
2010
, “
Enviromental Report, Aviation and Climate Change
,” International Civil Aviation Organization, Montreal, QC, Canada.
2.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.
3.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.
4.
Jones
,
W. P.
,
Lyra
,
S.
, and
Navarro-Martinez
,
S.
,
2012
, “
Numerical Investigation of Swirling Kerosene Spray Flames Using Large Eddy Simulation
,”
Combust. Flame
,
159
(
4
), pp.
1539
1561
.
5.
Giusti
,
A.
, and
Mastorakos
,
E.
,
2017
, “
Detailed Chemistry LES/CMC Simulation of a Swirling Ethanol Spray Flame Approaching Blow-Off
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2625
2632
.
6.
Andreini
,
A.
,
Bertini
,
D.
,
Facchini
,
B.
, and
Puggelli
,
S.
,
2015
, “
Large-Eddy Simulation of a Turbulent Spray Flame Using the Flamelet Generated Manifold Approach
,”
Energy Procedia
,
82
, pp.
395
401
.
7.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2016
, “
Scale Adaptive Simulations of a Swirl Stabilized Spray Flame Using Flamelet Generated Manifold
,”
Energy Procedia
,
101
, pp.
1143
1150
.
8.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2018
, “
Modeling Strategies for Large Eddy Simulation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051501
.
9.
Pampaloni
,
D.
,
Bertini
,
D.
,
Puggelli
,
S.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2017
, “
Methane Swirl-Stabilized Lean Burn Flames: Assessment of Scale-Resolving Simulations
,”
Energy Procedia
,
126
, pp.
834
841
.
10.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2017
, “
Assessment of Scale-Resolved Computational Fluid Dynamics Methods for the Investigation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021501
.
11.
Puggelli
,
S.
,
Paccati
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Giusti
,
A.
,
2018
, “
Multi-Coupled Numerical Simulations of the Dlr Generic Single Sector Combustor
,”
Combust. Sci. Technol.
,
190
(8), pp. 1409–1425.
12.
Freitag
,
S.
,
Meier
,
U.
,
Heinze
,
J.
,
Behrendt
,
T.
, and
Hassa
,
C.
, 2010, “
Measurement of Initial Conditions of a Kerosene Spray From a Generic Aeroengine Injector at Elevated Pressure
,”
ILASS—Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems
, Brno, Czech Republic, Sept. 6–8, pp. 1–2.http://ilasseurope.org/ICLASS/ilass2010/FILES/ABSTRACTS/137.pdf
13.
Meier
,
U.
,
Heinze
,
J.
,
Freitag
,
S.
, and
Hassa
,
C.
,
2012
, “
Spray and Flame Structure of a Generic Injector at Aeroengine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 031503.
14.
Bertini
,
D.
,
Mazzei
,
L.
,
Puggelli
,
S.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2018
, “
Numerical and Experimental Investigation on an Effusion-Cooled Lean Burn Aeronautical Combustor: Metal Temperature
,”
ASME
Paper No. GT2018-76779.
15.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2007
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Advances in Hybrid RANS-LES Modelling
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97), S.H. Peng, and W. Haase, eds., Springer, Berlin.
16.
ANSYS
, 2016, “
ANSYS Fluent, 17.1 Theory Guide
,”
ANSYS
, Canonsburg, PA.
17.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
Van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2015
, “
The Implementation of Five-Dimensional FGM Combustion Model for the Simulation of a Gas Turbine Model Combustor
,”
ASME
Paper No. GT2015-42037.
18.
Sirjean
,
B.
,
Dames
,
E.
,
Sheen
,
D. A.
,
Wang
,
H.
,
Lu
,
T. F.
, and
Law
,
T. F.
,
2009
, “
Jetsurf 1.0-ls: Simplified Chemical Kinetic Models for High-Temperature Oxidation of C5 to C12 n-Alkanes
,” Sixth U.S. National Combustion Meeting, Ann Arbor, MI, May 17–20.
19.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
20.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.
21.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
22.
Ranz
,
W. E.
, Jr.
, and
Marshall
,
W. R.
,
1952
, “
Vaporation From Drops—Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp. 141–146.
23.
Rachner
,
M.
,
1998
, “
Die Stoffeigenschaften Von Kerosin Jet A-1
,” DLR, Institut für Antriebstechnik, März, Köln, Germany, Technical Report.
24.
Gepperth
,
S.
,
Barow
,
E.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2014
, “
Primary Atomization of Prefilming Airblast Nozzles: Experimental Studies Using Advanced Image Processing Techniques
,”
26th Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe)
, Bremen, Germany, Sept. 8–10, pp.
8
10
.
25.
Pope
,
S. B.
,
2004
, “
Ten Questions concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(1), p.
35
.
26.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2014
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011506
.
27.
Mazzei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Bellocci
,
L.
,
2016
, “
A 3D Coupled Approach for the Thermal Design of Aero-Engine Combustor Liners
,”
ASME
Paper No. GT2016-56605.
28.
Domingo
,
P.
,
Vervisch
,
L.
, and
Réveillon
,
J.
,
2005
, “
DNS Analysis of Partially Premixed Combustion in Spray and Gaseous Turbulent Flame-Bases Stabilized in Hot Air
,”
Combust. Flame
,
140
(
3
), pp.
172
195
.
29.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2010
, “
Large-Eddy Simulation for Combustion Systems: Modeling Approaches for Partially Premixed Flows
,”
Open Thermodyn. J.
,
4
(
1
), pp.
76
85
.
You do not currently have access to this content.