In a cover-plate system, rotating receiver hole is an important component, because its structure and characteristics directly influence the aerodynamic loss and cooling performance in the preswirl system. A new type of vane shaped (VS) receiver hole was designed and presented in this paper. Numerical simulations were carried out to compare the performances among high-radius direct transfer system (model-A), low-radius cover-plate system with simple drilled (SD) receiver holes (model-B), and low-radius cover-plate system with VS receiver holes (model-C). Results indicate that for the operating conditions simulated here, temperature drop effectiveness of the high-radius preswirl system is much better compared to the low-radius system with SD receiver hole. With VS receiver hole, the aerodynamic loss in model-C is the lowest. The nondimensional static pressure at preswirl nozzle exit is only 0.93, around 10% lower than model-B. Moreover, it has a more remarkable cooling performance. The temperature drop effectiveness of model-C can be as high as 0.52, around 67.7% higher compared to model-A. The system with VS receiver hole could not only realize the advantage of low leakage flow as a low-radius system, but also could achieve higher temperature drop compared to high-radius system.

References

1.
Meierhofer
,
B.
, and
Franklin
,
C. J.
,
1981
, “
An Investigation of a Preswirled Cooling Airflow to a Turbine Disc by Measuring the Air Temperature in the Rotating Channels
,”
ASME
Paper No. 81-GT-132.
2.
El-Oun
,
Z. B.
, and
Owen
,
J. M.
,
1989
, “
Pre-Swirl Blade-Cooling Effectiveness in an Adiabatic Rotor-Stator System
,”
ASME J. Turbomach.
,
111
(
4
), pp.
522
529
.
3.
Jarzombek
,
K.
,
Dohmen
,
H. J.
,
Benra
,
F.-K.
, and
Schneider
,
O.
,
2006
, “
Flow Analysis in Gas Turbine Pre-Swirl Cooling Air Systems Variation of Geometric Parameters
,”
ASME
Paper No. GT2006-90445.
4.
Jarzombek
,
K.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2007
, “
CFD Analysis of Flow in High-Radius Pre-Swirl Systems
,”
ASME
Paper No. GT2007-27404
.
5.
Scricca
,
J. A.
, and
Moore
,
K. D.
,
1997
, “
Effects of ‘Cooled’ Cooling Air on Pre-Swirl Nozzle Design
,” Pratt and Whitney Aircraft, West Palm Beach, FL, Technical Report No.
NASA/CP-98-208527
.https://ntrs.nasa.gov/search.jsp?R=20080003811
6.
Mirzamoghadam
,
A. V.
,
Riahi
,
A.
, and
Morris
,
M.
,
2011
, “
High Pressure Turbine Low Radius Radial TOBI Discharge Coefficient Validation Process
,”
ASME
Paper No. GT2011-45113
.
7.
Wu
,
H.
,
Feng
,
Q.
, and
Liu
,
G.
,
2016
, “
Entropy Analysis of a Cover-Plate Pre-Swirl System
,”
J. Propul. Technol.
,
37
(
11
), pp.
2048
2054
.
8.
Anish
,
K. G.
,
Ramerth
,
D.
, and
Dhinagaran
,
R.
,
2008
, “
Numerical Simulation of Tobi Flow-Analysis of the Cavity Between a Seal-Plate and HPT Disk With Pumping Vanes
,”
ASME
Paper No. GT2008-50739.
9.
Popp
,
O.
,
Zimmerman
,
H.
, and
Kutz
,
J.
,
1998
, “
CFD Analysis of Cover-Plate Receiver Flow
,”
ASME J. Turbomach.
,
120
(
1
), pp.
43
49
.
10.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2002
, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
,
124
(
1
), pp.
119
124
.
11.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2004
, “
Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets
,”
ASME J. Eng. Gas Turbine Power
,
126
(
4
), pp.
803
808
.
12.
Zhang
,
J.
,
Wang
,
S.
, and
Wang
,
C.
,
2014
, “
Influence of Receiver Hole on Temperature Reduction Characteristic of Pre-Swirl System
,”
J. Chongqing Univ. Technol. (Natural Sci.)
,
28
(
3
), pp.
50
57
.
13.
Yan
,
Y.
,
Farzaneh-Gord
,
M.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2003
, “
Fluid Dynamics of a Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
,
125
(
4
), pp.
641
647
.
14.
Chew
,
J. W.
,
Ciampoli
,
F.
,
Hills
,
N. J.
, and
Scanlon
,
T.
,
2005
, “
Per-Swirled Cooling Air Delivery System Performance
,”
ASME
Paper No. GT2005-68323
.
15.
Farzaneh-Gord
,
M.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2005
, “
Numerical and Theoretical Study of Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System
,”
ASME
Paper No. GT2005-68135
.
16.
Laurello
,
V.
,
Yuri
,
M.
,
Fujii
,
K.
,
Ishizaka
,
K.
,
Nakamura
,
T.
, and
Nishimura
,
H.
,
2004
, “
Measurement and Analysis of an Efficient Turbine Rotor Pump Work Reduction System Incorporating Pre-Swirl Nozzles and a Free Vortex Pressure Augmentation Chamber
,”
ASME
Paper No. GT2004-53090
.
17.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Effect of Radial Location of Nozzles on Heat Transfer in Pre-Swirl Cooling Systems
,”
ASME J. Turbomach.
,
133
(
2
), pp.
394
399
.
18.
Javiya
,
U.
,
Chew
,
J.
, and
Hills
,
N.
,
2011
, “
A Comparative Study of Cascade Vanes and Drilled Nozzle Design for Pre-Swirl
,”
ASME
Paper No. GT2011-46006
.
19.
Liu
,
G.
,
Wu
,
H.
,
Feng
,
Q.
, and
Liu
,
S.
,
2016
, “
Theoretical and Numerical Analysis on the Temperature Drop and Power Consumption of a Pre-Swirl System
,”
ASME
Paper No. GT2016-56742.
20.
Wu
,
H.
,
Liu
,
G.
,
Wu
,
Z.
,
Feng
,
Q.
, and
Wang
,
Y.
,
2018
, “
Measurement of Pressures and Temperatures in a Cover-Plate Pre-Swirl System
,”
ASME
Paper No. GT2018-75671.
21.
Liu
,
Y.
,
Liu
,
G.
,
Kong
,
X.
, and
Wang
,
Y.
,
2018
, “
Experimental Testing and Numerical Analysis on the Effects of Nozzles in Pre-Swirl Cooling System
,”
AIAA J. Propul. Power
,
34
(
4
), pp.
1015
1025
.
22.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G.
, and
Owen
,
M.
,
2009
, “
Effect of Radial Location of Nozzles on Performance of Pre-Swirl Systems
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
223
(
2
), pp.
179
190
.
23.
Wu
,
C.
,
Vaisman
,
B.
, and
McCusker
,
K.
,
2011
, “
CFD Analyses of HPT Blade Air Delivery System With and Without Impellers
,”
ASME
Paper No. GT2011-45949.
24.
Karnahl
,
J.
,
Wolfersdorf
,
V. J.
,
Tham
,
K. M.
,
Wilson
,
M.
, and
Lock
,
G.
,
2011
, “
CFD Simulations of Flow and Heat Transfer in a Pre-Swirl System: Influence of Rotating-Stationary Domain Interface
,”
ASME
Paper No. GT2011-45085.
You do not currently have access to this content.