This numerical study deals with a premixed ethylene–air jet at 300 K injected into a hot vitiated crossflow at 1500 K and atmospheric pressure. The reactive jet in crossflow (RJICF) was simulated with compressible 3D large eddy simulations (LES) with an analytically reduced chemistry (ARC) mechanism and the dynamic thickened flame (DTF) model. ARC enables simulations of mixed combustion modes, such as autoignition and flame propagation, that are both present in this RJICF. 0D and 1D simulations provide a comparison with excellent agreement between ARC and detailed chemistry in terms of autoignition time and laminar flame speed. The effect of the DTF model on autoignition was investigated for varying species compositions and mesh sizes. Comparisons between LES and experiments are in good agreement for average velocity distributions and jet trajectories; LES remarkably capture experimentally observed flame dynamics. An analysis of the simulated RJICF shows that the leeward propagating flame has a stable flame root close to the jet exit. The lifted windward flame, on the contrary, is anchored in an intermittent fashion due to autoignition flame stabilization. The windward flame base convects downstream and is “brought back” by autoignition alternately. These autoignition events occur close to a thin layer that is associated with radical build-up and that stretches down to the jet exit.

References

1.
Sutton
,
G. O.
,
1932
, “
A Theory of Eddy Diffusion in the Atmosphere
,”
Proc. R. Soc. London. Ser. A
,
135
(
826
), pp.
143
165
.
2.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Cross Flow Research
,” AGARD, Computational and Experimental Assessment of Jets in Cross Flow, Winchester, UK, Paper No. AGARD CP-534.
3.
Foust
,
M.
,
Thomsen
,
D.
,
Stickles
,
R.
,
Cooper
,
C.
, and
Dodds
,
W.
,
2012
, “
Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines
,”
AIAA
Paper No. AIAA 2012-0936.
4.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
, and
Wickstroem
,
A.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790
.
5.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
6.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability & Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
ASME
Paper No. GT2017-63998
.
7.
Hoehne
,
V. O.
, and
Luce
,
R. G.
,
1970
, “
Effect of Velocity, Temperature, and Molecular Weight on Flammability Limits in Wind-Blown Jets of Hydrocarbon Gases
,”
Proc. Am. Pet. Inst., Sect. 3
,
50
, pp. 56–70.
8.
Brzustowski
,
T. A.
,
Gollahalli
,
S. R.
, and
Sullivan
,
H. F.
,
1975
, “
The Turbulent Hydrogen Diffusion Flame in a Cross-Wind
,”
Combust. Sci. Technol.
,
11
(
1–2
), pp.
29
33
.
9.
Wagner
,
J.
,
Renfro
,
M.
, and
Cetegen
,
B.
,
2017
, “
Premixed Jet Flame Behavior in a Hot Vitiated Crossflow of Lean Combustion Products
,”
Combust. Flame
,
176
, pp.
521
533
.
10.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Dayton
,
J. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2017
, “
Flame Stabilization Analysis of a Premixed Reacting Jet in Vitiated
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3763
3771
.
11.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.
12.
Schmitt
,
D.
,
Kolb
,
M.
,
Weinzierl
,
J.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2013
, “
Ignition and Flame Stabilization of a Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2013-94763
.
13.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.
14.
Kalghatgi
,
G. T.
,
1983
, “
The Visible Shape and Size of a Turbulent Hydrocarbon Jet Diffusion Flame in a Cross-Wind
,”
Combust. Flame
,
52
(
C
), pp.
91
106
.
15.
Boutazakhti
,
M.
,
Thomson
,
M. J.
, and
Lightstone
,
M.
,
2001
, “
The Effect of Jet Mixing on the Combustion Efficiency of a Hot Fuel-Rich Cross-Flow
,”
Combust. Sci. Technol.
,
163
(
1
), pp.
211
228
.
16.
Grout
,
R. W.
,
Gruber
,
A.
,
Kolla
,
H.
,
Bremer
,
P. T.
,
Bennett
,
J. C.
,
Gyulassy
,
A.
, and
Chen
,
J. H.
,
2012
, “
A Direct Numerical Simulation Study of Turbulence and Flame Structure in Transverse Jets Analysed in Jet-Trajectory Based Coordinates
,”
J. Fluid Mech.
,
706
(
2012
), pp.
351
383
.
17.
Lyra
,
S.
,
Wilde
,
B.
,
Kolla
,
H.
,
Seitzman
,
J. M.
,
Lieuwen
,
T. C.
, and
Chen
,
J. H.
,
2015
, “
Structure of Hydrogen-Rich Transverse Jets in a Vitiated Turbulent Flow
,”
Combust. Flame
,
162
(
4
), pp.
1234
1248
.
18.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2018
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
(in press).
19.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.
20.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2013
, “
Autoignition of Hydrogen/Nitrogen Jets in Vitiated Air Crossflows at Different Pressures
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3185
3192
.
21.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2012
, “
Stratified Jet Flames in a Heated (1390K) Air Cross-Flow With Autoignition
,”
Combust. Flame
,
159
(
3
), pp.
1205
1214
.
22.
Arndt
,
C. M.
,
Papageorge
,
M. J.
,
Fuest
,
F.
,
Sutton
,
J. A.
,
Meier
,
W.
, and
Aigner
,
M.
,
2016
, “
The Role of Temperature, Mixture Fraction, and Scalar Dissipation Rate on Transient Methane Injection and Auto-Ignition in a Jet in Hot Coflow Burner
,”
Combust. Flame
,
167
, pp.
60
71
.
23.
Mastorakos
,
E.
,
Baritaud
,
T. A.
, and
Poinsot
,
T. J.
,
1997
, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
,
109
(
1–2
), pp.
198
223
.
24.
Schulz
,
O.
,
Jaravel
,
T.
,
Poinsot
,
T.
,
Cuenot
,
B.
, and
Noiray
,
N.
,
2017
, “
A Criterion to Distinguish Autoignition and Propagation Applied to a Lifted Methane-Air Jet Flame
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1637
1644
.
25.
Weinzierl
,
J.
,
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Large Eddy Simulation of a Reacting Jet in Cross Flow With NOx Prediction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031502
.
26.
Schlegel
,
F.
, and
Ghoniem
,
A. F.
,
2014
, “
Simulation of a High Reynolds Number Reactive Transverse Jet and the Formation of a Triple Flame
,”
Combust. Flame
,
161
(
4
), pp.
971
986
.
27.
Fiorina
,
B.
,
Veynante
,
D.
, and
Candel
,
S.
,
2014
, “
Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames
,”
Flow, Turbul. Combust.
,
94
(
1
), pp.
3
42
.
28.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
29.
Heinz
,
C. M. B.
, and
Polifke
,
W.
,
2005
, “
Optimization of Rate Coefficients for Global Reaction Mechanisms Using a Nested Genetic Algorithm
,”
European Combustion Meeting
.
30.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
31.
Kulkarni
,
R.
,
Zellhuber
,
M.
, and
Polifke
,
W.
,
2013
, “
LES Based Investigation of Autoignition in Turbulent Co-Flow Configurations
,”
Combust. Theory Modell.
,
17
(
2
), pp.
224
259
.
32.
Schulz
,
O.
, and
Noiray
,
N.
,
2018
, “
Autoignition Flame Dynamics in Sequential Combustors
,”
Combust. Flame
,
192
, pp.
86
100
.
33.
Scarpato
,
A.
,
Zander
,
L.
,
Kulkarni
,
R.
, and
Schuermans
,
B.
,
2016
, “
Identification of Multi-Parameter Flame Transfer Function for a Reheat Combustor
,”
ASME
Paper No. GT2016-57699
.
34.
Felden
,
A.
,
Cuenot
,
B.
, and
Riber
,
E.
,
2018
, “
Impact of Direct Integration of Analytically Reduced Chemistry in LES of a Sooting Swirled Non-Premixed Combustor
,”
Combust. Flame
,
191
, pp.
270
286
.
35.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Pepiot
,
P.
,
2018
, “
Prediction of Flame Structure and Pollutant Formation of Sandia Flame D Using Large Eddy Simulation With Direct Integration of Chemical Kinetics
,”
Combust. Flame
,
188
, pp.
180
198
.
36.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Summer Program,
pp.
193
208
http://adsabs.harvard.edu/abs/1988stun.proc..193H.
37.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.3.0, Cantera, accessed Aug. 24, 2018, http://www.cantera.org
38.
Narayanaswamy
,
K.
,
Pepiot
,
P.
, and
Pitsch
,
H.
,
2014
, “
A Chemical Mechanism for Low to High Temperature Oxidation of n-Dodecane as a Component of Transportation Fuel Surrogates
,”
Combust. Flame
,
161
(
4
), pp.
866
884
.
39.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
40.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Automatic Chemical Lumping Method for the Reduction of Large Chemical Kinetic Mechanisms
,”
Combust. Theory Modell.
,
12
(
6
), pp.
1089
1108
.
41.
Gicquel
,
L. Y. M.
,
Gourdain
,
N.
,
Boussuge
,
J. F.
,
Deniau
,
H.
,
Staffelbach
,
G.
,
Wolf
,
P.
, and
Poinsot
,
T.
,
2011
, “
High Performance Parallel Computing of Flows in Complex Geometries
,”
C. R. Mec.
,
339
(
2–3
), pp.
104
124
.
42.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
43.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
44.
van Driest
,
E. R.
,
2003
, “
Turbulent Boundary Layer in Compressible Fluids
,”
J. Spacecr. Rockets
,
40
(
6
), pp.
1012
1028
.
45.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, p.
17
.
46.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
47.
Deardorff
,
J. W.
,
1980
, “
Stratocumulus-Capped Mixed Layers Derived From a Three-Dimensional Model
,”
Boundary-Layer Meteorol.
,
18
(
4
), pp.
495
527
.
48.
Luo
,
Z.
,
Yoo
,
C. S.
,
Richardson
,
E. S.
,
Chen
,
J. H.
,
Law
,
C. K.
, and
Lu
,
T.
,
2012
, “
Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow
,”
Combust. Flame
,
159
(
1
), pp.
265
274
.
49.
Navarro-Martinez
,
S.
, and
Kronenburg
,
A.
,
2009
, “
LES-CMC Simulations of a Lifted Methane Flame
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1509
1516
.
50.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Combustion Instabilities in Gas Turbine Engines
(Progress in Astronautics and Aeronautics, Vol.
210
),
T. C.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
51.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
You do not currently have access to this content.