This work presents an exergy analysis and performance assessment of three recuperative thermodynamic cycles for gas turbine applications. The first configuration is the conventional recuperative (CR) cycle in which a heat exchanger is placed after the power turbine (PT). In the second configuration, referred as alternative recuperative (AR) cycle, a heat exchanger is placed between the high pressure and the PT, while in the third configuration, referred as staged heat recovery (SHR) cycle, two heat exchangers are employed, the primary one between the high and PTs and the secondary at the exhaust, downstream the PT. The first part of this work is focused on a detailed exergetic analysis on conceptual gas turbine cycles for a wide range of heat exchanger performance parameters. The second part focuses on the implementation of recuperative cycles in aero engines, focused on the MTU-developed intercooled recuperative aero (IRA) engine concept, which is based on a conventional recuperation approach. Exergy analysis is applied on specifically developed IRA engine derivatives using both alternative and SHR recuperation concepts to quantify energy exploitation and exergy destruction per cycle and component, showing the amount of exergy that is left unexploited, which should be targeted in future optimization actions.

References

1.
Çengel
,
Y. A.
, and
Boles
,
M.
,
1998
,
Thermodynamics, an Engineering Approach
,
McGraw-Hill
,
New York
.
2.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
,
Krieger Publishing
,
Malabar, FL
.
3.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere Publishing
,
New York
.
4.
Bejan
,
A.
, and
Siems
,
D. L.
,
2001
, “
The Need for Exergy Analysis and Thermodynamic Optimization in Aircraft Development
,”
Exergy, Int. J.
,
1
(
1
), pp.
14
24
.
5.
Cornelissen
,
R. L.
, and
Hirs
,
G. G.
,
1997
, “
Exergetic Optimisation of a Heat Exchanger
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1567
1576
.
6.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
7.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2004
, “
Exergy as a Driver for Achieving Sustainability
,”
Int. J. Green Energy
,
1
(
1
), pp.
1
19
.
8.
Tsatsaronis
,
G.
,
1999
, “
Design Optimization Using Exergoeconomics
,”
Thermodynamic Optimization of Complex Energy Systems
,
Springer
,
Dordrecht, The Netherlands
, pp.
101
115
.
9.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
(
7
), pp.
545
565
.
10.
Dellenback
,
P. Α.
,
2002
, “
Improved Gas Turbine Efficiency Through Alternative Regenerator Configuration
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
441
446
.
11.
Dellenback
,
P. A.
,
2006
, “
A Reassessment of the Alternative Regeneration Cycle
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
783
788
.
12.
COCO, 2017, “
The CAPE-OPEN to CAPE-OPEN Simulator
,” COCO, accessed Nov. 13, 2017, http://www.cocosimulator.org/
13.
Horlock
,
J. H.
,
Young
,
J. B.
, and
Manfrida
,
G.
,
2000
, “
Exergy Analysis of Modern Fossil-Fuel Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
1
7
.
14.
Oh
,
S.-D.
,
Pang
,
H.-S.
,
Kimm
,
S.-M.
, and
Kwak
,
H.-Y.
,
1996
, “
Exergy Analysis for a Gas Turbine Cogeneration System
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
782
790
.
15.
Cornelissen
,
R. L.
, and
Hirs
,
G. G.
,
1999
, “
Thermodynamic Optimisation of a Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
42
(
5
), pp.
951
960
.
16.
Clarke
,
J. M.
, and
Horlock
,
J. H.
,
1975
, “
Availability and Propulsion
,”
J. Mech. Eng. Sci.
,
17
(
4
), pp.
223
232
.
17.
Hayes
,
D.
,
Lone
,
M. M.
,
Whidborne
,
J.
, and
Coetzee
,
E.
,
2016
, “
Entropy Generation Minimisation and Exergy Analysis Approaches for Aerospace Applications—A Review
,”
AIAA
Paper No. 2016-0866.
18.
Pellegrini
,
L. F.
,
Gandolfi
,
R.
,
Da Silva
,
G. A. L.
, and Silvio de O., Jr.,
2007
, “
Exergy Analysis as a Tool for Decision Making in Aircraft Systems Design
,”
AIAA
Paper No. 2007-1396.
19.
Arntz
,
A.
,
Atinault
,
O.
, and
Merlen
,
A.
,
2014
, “
Exergy-Based Formulation for Aircraft Aeropropulsive Performance Assessment: Theoretical Development
,”
AIAA J.
,
53
(
6
), pp.
1
13
.
20.
Grönstedt
,
T.
,
Irannezhad
,
M.
,
Lei
,
X.
,
Thulin
,
O.
, and
Lundbladh
,
A.
,
2013
, “
First and Second Law Analysis of Future Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031202
.
21.
Boggia
,
S.
, and
Rüd
,
K.
,
2004
, “
Intercooled Recuperated Aero Engine
,” The Deutscher Luft- und Raumfahrt Kongress, Dresden, Germany, Sept. 20–23.
22.
Schonenborn
,
H.
,
Ebert
,
E.
,
Simon
,
B.
, and
Storm
,
P.
,
2004
, “
Thermomechanical Design of a Heat Exchanger for a Recuperative Aero Engine
,”
ASME
Paper No. GT2004-53696.
23.
Kays
,
W.
, and
London
,
A.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
24.
Yakinthos
,
K.
,
Misirlis
,
D.
,
Vlahostergios
,
Z.
,
Flouros
,
M.
,
Donnerhack
,
S.
, and
Goulas
,
A.
,
2015
, “
Best Strategies for the Development of a Holistic Porosity Model of a Heat Exchanger for Aero Engine Applications
,”
ASME
Paper No. GT2015-42408.
25.
LEMCOTEC, 2017, “
Low Emissions Core-Engine Technologies (LEMCOTEC)
,” LEMCOTEC, Berlin, accessed Nov. 13, 2017, http://www.lemcotec.eu/
You do not currently have access to this content.