Fast response pressure data acquired in a high-speed 1.5-stage turbine hot gas ingestion rig (HGIR) show the existence of pressure oscillation modes in the rim-seal-wheelspace cavity of a high pressure gas turbine stage with purge flow. The experimental results and observations are complemented by computational assessments of pressure oscillation modes associated with the flow in canonical cavity configurations. The cavity modes identified include shallow cavity modes and Helmholtz resonance. The response of the cavity modes to variation in design and operating parameters are assessed. These parameters include cavity aspect ratio (AR), purge flow ratio, and flow direction defined by the ratio of primary tangential to axial velocity. Scaling the cavity modal response based on computational results and available experimental data in terms of the appropriate reduced frequencies appears to indicate the potential presence of a deep cavity mode as well. While the role of cavity modes on hot gas ingestion cannot be clarified based on the current set of data, the unsteady pressure field associated with turbine rim cavity modal response can be expected to drive ingress/egress.

References

1.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J Gas Turbines Power
,
138
(
12
), p.
120801
.
2.
Wang
,
C. Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2013
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
3.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.
4.
Daniels
,
W.
,
Johnson
,
B.
,
Graber
,
D.
, and
Martin
,
R.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.
5.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
6.
Bohn
,
D.
,
Rudzinski
,
B.
,
Surken
,
N.
, and
Garter
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.
7.
Teramachi
,
K.
,
Hamabe
,
M.
,
Manabe
,
T.
, and
Yanagidani
,
N.
,
2003
, “
Experimental and Numerical Investigation of Sealing Performance of Turbine Rim Seals
,” International Gas Turbine Congress (IGTC), Tokyo, Japan, Nov. 2–7, Paper No.
IGTC2003Tokyo TS-025
.https://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts025.pdf
8.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals, Part 3: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
9.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-Disk Cavity Ingestion in a Model 1.5-Stage Axial Flow Turbine
,”
ASME
Paper No. GT2011-45895.
10.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
11.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
, and
Paolillo
,
R. E.
,
2005
, “
Experiment on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME J Gas Turbines Power
,
127
(
3
), pp.
573
582
.
12.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvine
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (Start) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
13.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1-1/2 Stage Turbine Wheelspace Hot Gas Ingestion Rig (Hgir)—Part 1: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020.
14.
Ding
,
Z.
,
Palafox
,
P.
,
Moore
,
K.
,
Chupp
,
R.
, and
Kirtley
,
K.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part II: CFD Modeling and Validation
,”
ASME
Paper No. GT2013-96021.
15.
Krishnamurty
,
K.
,
1955
, “
Acoustic Radiation From Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Note 3487.
16.
Plumblee
,
H. E.
,
Gibson
,
J. S.
, and
Lassiter
,
I. E.
,
1962
, “
A Theoretical and Experimental Investigation of the Acoustic Response of Cavities in an Aerodynamic Flow
,” Lockheed Aircraft Corporation, Marieta, GA, Technical Report No.
61-75
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0277803
17.
East
,
L.
,
1966
, “
Aerodynamic Induced Resonance in Rectangular Cavities
,”
J. Sound Vib.
,
3
(3), pp.
277
287
.
18.
Rossiter
,
J.
,
1964
, “
Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Aeronautical Research Council Reports and Memoranda, Her Majesty's Stationary Office, London, Report No. 3438.
19.
Sarohia
,
V.
, and
Massier
,
P.
,
1977
, “
Control of Cavity Noise
,”
J. Aircr.
,
14
(
9
), pp.
833
837
.
20.
Sarno
,
R.
, and
Franke
,
M.
,
1994
, “
Supression of Flow-Induced Pressure Oscillations in Cavities
,”
J. Aircr.
,
31
(
1
), pp.
90
96
.
21.
Sarohia
,
V.
,
1977
, “
Experimental Investigation of Oscillations in Flows Over Shallow Cavities
,”
AIAA J.
,
15
(
7
), pp.
984
991
.
22.
Gharib
,
M.
, and
Roshko
,
A.
,
1987
, “
The Effect of Flow Oscillations on Cavity Drag
,”
J. Fluid Mech.
,
177
, pp.
501
530
.
23.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
(2), pp.
152
164
.
24.
Komerath
,
N.
,
Ahuja
,
K.
, and
Chambers
,
F.
,
1987
, “
Prediction and Measurement of Flows Over Cavities—A Survey
,”
AIAA
Paper No. AIAA-87-0166.
25.
Ingard
,
U.
,
1953
, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
.
26.
Alster
,
M.
,
1972
, “
Improved Calculation of Resonant Frequencies of Helmholtz Resonators
,”
J. Sound Vib.
,
24
(
1
), pp.
63
85
.
27.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
28.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J.
, and
Marini
,
R.
,
2010
, “
Simulation of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729.
29.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
30.
O'Mahoney
,
T.
,
Hills
,
N.
,
Chew
,
J.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng. Part C
, 225(12), pp.
2881
2891
.
31.
Boudet
,
J.
,
Hills
,
N.
, and
Chew
,
J.
,
2006
, “
Numerical Simulation of Flow Interaction Between Turbine Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.
32.
Abrahamson
,
S. D.
,
Eaton
,
J. K.
, and
Koga
,
D. J.
,
1989
, “
The Flow Between Shrouded Co-Rotating Disks
,”
Phys. Fluids A: Fluid Dyn.
,
1
(
2
), pp.
241
251
.
33.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1994
, “
Experimental Investigation of Enclosed Rotor-Stator Disk Flows
,”
Exp. Therm. Fluid Sci.
,
9
(
4
), pp.
445
455
.
34.
Serre
,
E.
,
del Arco
,
E. C.
, and
Bontous
,
P.
,
2001
, “
Annular and Spiral Patterns in Flows Between Rotating and Stationary Discs
,”
J. Fluid Mech.
,
434
, pp.
65
100
.
35.
Schouveiler
,
L.
,
LeGal
,
P.
, and
Chauve
,
M. P.
,
2001
, “
Instabilities of the Flow Between a Rotating and a Stationary Disk
,”
J. Fluid Mech.
,
443
, pp.
329
350
.
36.
Czarny
,
O.
,
Iacovides
,
H.
, and
Launder
,
B.
,
2002
, “
Precessing Vortex Structures in Turbulent Flow Within Rotor-Stator Disc Cavities
,”
Flow Turbul. Combust.
,
69
(
1
), pp.
51
61
.
37.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(2), pp.
70
73
.
You do not currently have access to this content.