Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Postflame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence–chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry is the eddy dissipation concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants, which were based on an isotropic cascade analysis in the Reynolds-averaged Navier–Stokes (RANS) context. The objectives of this paper are: (i) to formulate the EDC cascade idea in the context of LES; and (ii) to validate the model using experimental data consisting of velocity (particle image velocimetry (PIV) measurements) and major species (1D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.

References

1.
Bulat
,
G.
,
Jones
,
W.
, and
Marquis
,
A.
,
2014
, “
NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method
,”
Combust. Flame
,
161
(
7
), pp.
1804
1825
.
2.
Haworth
,
D.
,
2010
, “
Progress in Probability Density Function Methods for Turbulent Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
168
259
.
3.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2017
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(3), 3817–3825.
4.
Fureby
,
C.
,
2009
, “
LES of a Multi-Burner Annular Gas Turbine Combustor
,”
Flow, Turbul. Combust.
,
84
(
3
), pp.
543
564
.
5.
Sabelnikov
,
V.
, and
Fureby
,
C.
,
2013
, “
LES Combustion Modeling for High Re Flames Using a Multi-Phase Analogy
,”
Combust. Flame
,
160
(
1
), pp.
83
96
.
6.
Giacomazzi
,
E.
,
Battaglia
,
V.
, and
Bruno
,
C.
,
2004
, “
The Coupling of Turbulence and Chemistry in a Premixed Bluff-Body Flame as Studied by Les
,”
Combust. Flame
,
138
(
4
), pp.
320
335
.
7.
Panjwani
,
B.
,
Ertesvåg
,
I.
,
Rian
,
K.
, and
Gruber
,
A.
,
2010
, “
Subgrid Combustion Modeling for Large Eddy Simulation of Turbulent Combustion Using Eddy Dissipation Concept
,”
Fifth European Conference on Computational Fluid Dynamics
, Lisbon, Portugal, pp.
14
17
.
8.
Lysenko
,
D. A.
,
Ertesvåg
,
I. S.
, and
Rian
,
K. E.
,
2014
, “
Numerical Simulations of the Sandia Flame D Using the Eddy Dissipation Concept
,”
Flow, Turbul. Combust.
,
93
(
4
), pp.
665
687
.
9.
Kjäldman
,
L.
,
Brink
,
A.
, and
Hupa
,
M.
,
2000
, “
Micro Mixing Time in the Eddy Dissipation Concept
,”
Combust. Sci. Technol.
,
154
(
1
), pp.
207
227
.
10.
De
,
A.
, and
Acharya
,
S.
,
2009
, “
Large Eddy Simulation of Premixed Combustion With a Thickened-Flame Approach
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
061501
.
11.
Parente
,
A.
,
Malik
,
M. R.
,
Contino
,
F.
,
Cuoci
,
A.
, and
Dally
,
B. B.
,
2016
, “
Extension of the Eddy Dissipation Concept for Turbulence/Chemistry Interactions to Mild Combustion
,”
Fuel
,
163
, pp.
98
111
.
12.
Chomiak
,
J.
, and
Karlsson
,
A.
,
1996
, “
Flame Liftoff in Diesel Sprays
,”
Symposium (International) on Combustion
, Vol.
26
, pp.
2557
2564
.
13.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept-a Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
, pp.
21
24
.
14.
Haworth
,
D.
,
2000
, “
A Probability Density Function/Flamelet Method for Partially Premixed Turbulent Combustion
,”
Summer Program
, pp.
145
156
.
15.
Fox
,
R. O.
, and
Stiles
,
H. L.
,
2003
,
Computational Models for Turbulent Reacting Flows
,
Cambridge University Press
,
Cambridge, UK
.
16.
De
,
A.
,
Oldenhof
,
E.
,
Sathiah
,
P.
, and
Roekaerts
,
D.
,
2011
, “
Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence-Chemistry Interaction
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
537
567
.
17.
Fureby
,
C.
,
2012
, “
A Comparative Study of Flamelet and Finite Rate Chemistry LES for a Swirl Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041503
.
18.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed., France.
19.
Ertesväg
,
I. S.
, and
Magnussen
,
B. F.
,
2007
, “
The Eddy Dissipation Turbulence Energy Cascade Model
,”
Combust. Sci. Technol.
,
159
(
1
), pp.
213
235
.
20.
Kim
,
S.-E.
,
2004
, “
Large Eddy Simulation Using an Unstructured Mesh Based Finite-Volume Solver
,”
AIAA
Paper No. 2004-2548.
21.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.
22.
Bulat
,
G.
,
Fedina
,
E.
,
Fureby
,
C.
,
Meier
,
W.
, and
Stopper
,
U.
,
2014
, “
Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3175
3183
.
23.
Sadasivuni
,
S. K.
,
Bulat
,
G.
,
Sanderson
,
V.
, and
Swaminathan
,
N.
,
2012
, “
Application of Scalar Dissipation Rate Model to Siemens DLE Combustors
,”
ASME
Paper No. GT2012-68483.
24.
Celik
,
I.
,
Cehreli
,
Z.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
25.
Sánchez
,
A.
,
Lépinette
,
A.
,
Bollig
,
M.
,
Liñán
,
A.
, and
Lázaro
,
B.
,
2000
, “
The Reduced Kinetic Description of Lean Premixed Combustion
,”
Combust. Flame
,
123
(
4
), pp.
436
464
.
26.
Zhou
,
B.
,
2015
, “
Advanced Laser-Based Multi-Scalar Imaging for Flame Structure Visualization Towards a Deepened Understanding of Premixed Turbulent Combustion
,” Ph.D. thesis, Lund University, Lund, Sweden.
27.
Jiang
,
L.-Y.
, and
Campbell
,
I.
,
2008
, “
Reynolds Analogy in Combustor Modeling
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1251
1263
.
You do not currently have access to this content.