Indirect combustion noise, generated by the acceleration and distortion of entropy waves through the turbine stages, has been shown to be the dominant noise source of gas turbines at low-frequencies and to impact the thermoacoustic behavior of the combustor. In the present work, indirect combustion noise generation is evaluated in the realistic, fully 3D transonic high-pressure turbine stage MT1 using large eddy simulations (LESs). An analysis of the basic flow and the different turbine noise generation mechanisms is performed for two configurations: one with a steady inflow and a second with a pulsed inlet, where a plane entropy wave train at a given frequency is injected before propagating across the stage generating indirect noise. The noise is evaluated through the dynamic mode decomposition (DMD) of the flow field. It is compared with the previous 2D simulations of a similar stator/rotor configuration, as well as with the compact theory of Cumpsty and Marble. Results show that the upstream propagating entropy noise is reduced due to the choked turbine nozzle guide vane. Downstream acoustic waves are found to be of similar strength to the 2D case, highlighting the potential impact of indirect combustion noise on the overall noise signature of the engine.

References

1.
Motheau
,
E.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Nicoud
,
F.
,
2012
, “
A Mixed Acoustic-Entropy Combustion Instability in a Realistic Gas Turbine
,” Summer Program, Center for Turbulence Research Stanford University, Stanford, CA.
2.
Marble
,
F. E.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbances From Gas Nonuniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
3.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
(5), pp.
190
231
.
4.
Bake
,
F.
,
Richter
,
C.
,
Muhlbauer
,
B.
,
Kings
,
N.
, and
Rohle
,
I.
, “
Thiele, F., and Noll, B., 2009, “The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.
5.
Leyko
,
M.
,
2010
, “
Mise en oeuvre et analyse de calculs aéroacoustiques de type sge pour la prévision du bruit de chambres de combustion aéronautiques
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
6.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
The Interaction of Entropy Fluctuations With Turbine Blade Rows; A Mechanism of Turbojet Engine Noise
,”
Proc. R. Soc. London, Ser. A
,
357
(
1690
), pp.
323
344
.
7.
Duran
,
I.
, and
Moreau
,
S.
,
2012
, “
Study of the Attenuation of Waves Propagating Through Fixed and Rotating Turbine Blades
,”
AIAA
Paper No. 2012-2133.
8.
Duran
,
I.
,
2013
, “
Prediction of Combustion Noise in Modern Aero-Engines Combining Large Eddy Simulations and Analytical Methods
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
9.
Schmid
,
P.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
(8), pp.
5
28
.
10.
Beard
,
P.
,
Smith
,
A.
, and
Povey
,
T.
,
2011
, “
Experimental and Computational Fluid Dynamics Investigation of the Efficiency of an Unshrouded Transonic High Pressure Turbine
,”
J. Power Energy
,
225
(
8
), pp.
1166
1179
.
11.
Papadogiannis
,
D.
,
Wang
,
G.
,
Moreau
,
S.
,
Duchaine
,
F.
,
Sicot
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of a High-Pressure Turbine Stage: Effects of Sub-Grid Scale Modeling and Mesh Resolution
,”
ASME
Paper No. GT2014-25786.
12.
Wang
,
G.
,
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L.
,
2013
, “
Towards Massively Parallel Large Eddy Simulation of Turbine Stages
,”
ASME
Paper No. GT2013-94852.
13.
Wang
,
G.
,
Duchaine
,
F.
,
Papadogiannis
,
D.
,
Duran
,
I.
,
Moreau
,
S.
, and
Gicquel
,
L.
,
2014
, “
An Overset Grid Method for Large Eddy Simulation of Turbomachinery Stages
,”
J. Comput. Phys.
,
274
, pp.
333
355
.
14.
Duchaine
,
F.
,
Jaure
,
S.
,
Poitou
,
D.
,
Quemerais
,
E.
,
Staffelbach
,
G.
,
Morel
,
T.
, and
Gicquel
,
L.
,
2013
, “
High Performance Conjugate Heat Transfer With the Openpalm Coupler
,”
5th International Conference on Coupled Problems in Science and Engineering
, Ibiza, Spain, June 17–19.
15.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for Unsteady Calculations
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
16.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
17.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
18.
Bennett
,
G.
, and
Fitzpatrick
,
J.
,
2008
, “
Noise Source Identification for Ducted Fan Systems
,”
AIAA J.
,
46
(
7
), pp.
1663
1674
.
19.
Schmid
,
P.
,
2013
, “
Dynamic Mode Decomposition
,” VKI Lecture Series, Nov. 4–7, von Karman Institute, Rhode-St-Genese, Belgium.
20.
Jovanovic
,
M. R.
,
Schmid
,
P.
, and
Nichols
,
J.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
21.
Kopitz
,
J.
,
Bröcker
,
E.
, and
Polifke
,
W.
,
2005
, “
Characteristics-Based Filter for Identification of Planar Acoustic Waves in Numerical Simulation of Turbulent Compressible Flow
,”
12th International Congress on Sound and Vibration
, Lisbon, Portugal, July 11–14.
You do not currently have access to this content.