A new meshless Lagrangian particle code has been developed to tackle the challenging numerical modeling of primary atomization. In doing so the correct treatment and representation of the interfacial physics are crucial prerequisites. Grid based codes using interface tracking or interface capturing techniques, such as the volume of fluid or level set method, exhibit difficulties regarding mass conservation, curvature capturing and interface diffusion. The objective of this work is to overcome these shortcomings of common state-of-the-art grid based approaches. Our multidimensional meshless particle code is based on the smoothed particle hydrodynamics (SPH) method. Various test cases have been conducted, by which the capability of accurately capturing the physics of single and multiphase flows is verified and the future potential of this approach is demonstrated. Compressible as well as incompresssible fluids can be modeled. Surface tension effects are taken into account by two different models. Solid walls as well as periodic boundary conditions offer a broad variety of numerically modeling technical applications. In a first step, single phase calculations of shear driven liquid flows have been carried out. Furthermore, the disintegration of a gravity driven liquid jet emerging from a generic nozzle has been investigated in free surface simulations. The typical formation of a meniscus due to surface tension is observed. Spray formation is qualitatively in good agreement compared to experiments. Finally, the results of a two-phase simulation with a fluid density ratio of 1000, which is similar to a fuel-air fluid system as in airblast atomizers, are presented. The surface minimization and pressure jump across the droplet interface due to surface tension can be predicted accurately. The test cases conducted so far demonstrate the accuracy of the existing code and underline the promising potential of this new method for successfully predicting primary atomization.
Skip Nav Destination
Karlsruhe Institute of Technology (KIT),
Article navigation
January 2013
Research-Article
Modeling Spray Formation in Gas Turbines—A New Meshless Approach
Corina Hoefler,
Hans-Joerg Bauer
Karlsruhe Institute of Technology (KIT),
Hans-Joerg Bauer
Institut fuer Thermische Stroemungsmaschinen
,Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe
, Germany
Search for other works by this author on:
Corina Hoefler
e-mail: corina.hoefler@kit.edu
Hans-Joerg Bauer
Institut fuer Thermische Stroemungsmaschinen
,Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe
, Germany
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the Journal of Engineering for Gas Turbines and Power. Manuscript received June 20, 2012; final manuscript received July 3, 2012; published online November 26, 2012. Editor: Dilip R. Ballal.
J. Eng. Gas Turbines Power. Jan 2013, 135(1): 011503 (8 pages)
Published Online: November 26, 2012
Article history
Received:
June 20, 2012
Revision Received:
July 3, 2012
Citation
Hoefler, C., Braun, S., Koch, R., and Bauer, H. (November 26, 2012). "Modeling Spray Formation in Gas Turbines—A New Meshless Approach." ASME. J. Eng. Gas Turbines Power. January 2013; 135(1): 011503. https://doi.org/10.1115/1.4007378
Download citation file:
Get Email Alerts
Accelerating Chemical Kinetics Calculations with Physics Informed Neural Networks
J. Eng. Gas Turbines Power
Fully Coupled Analysis of Flutter Induced Limit Cycles: Frequency Versus Time Domain Methods
J. Eng. Gas Turbines Power (July 2023)
Impact of Ignition Assistant on Combustion of Cetane 30 and 35 Jet-Fuel Blends in a Compression-Ignition Engine at Moderate Load and Speed
J. Eng. Gas Turbines Power (July 2023)
Related Articles
Smoothed Particle Hydrodynamics Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects
J. Fluids Eng (June,2018)
Ejection Process Simulation for a Piezoelectric Microdroplet Generator
J. Fluids Eng (November,2006)
Key Parameters for the Performance of Impaction-Pin Nozzles Used in
Inlet Fogging of Gas Turbine Engines
J. Eng. Gas Turbines Power (April,2007)
Effects of Fluid Properties on Spray Characteristics of a Flow-Blurring Atomizer
J. Eng. Gas Turbines Power (April,2018)
Related Proceedings Papers
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine