This paper describes simulation of a small stationary gas turbine combustor of a reverse flow, semi-silo type for power generation. The premixed coherent flame model (PCFM) is applied for partially premixed methane/air with an imposed downstream flame area density (FAD) to avoid flashback and incomplete combustion. Physical models are validated against the measurements of outlet temperature, product gas composition, and NO emission at the low operating pressure. Parametric study is performed to investigate the effect of load and pilot/total (P/T) fuel ratio on mixing characteristics and the resulting temperature distribution and pollutant emissions. As the P/T fuel ratio increases, the high temperature region over 1900 K enhances reaction of the mixture from the main nozzle in the primary mixing zone. For low P/T ratios, the pilot stream dilutes the mixture, on the contrary, to suppress reaction with an increasing height of the lifted flame. The NO is associated with the unmixedness as well as the mean temperature level and tends to increase with increasing load and P/T ratio. The high operating pressure does not affect overall velocity and temperature distribution, while it tends to increase NO and liner temperature under the given boundary conditions.

References

1.
Dobbeling
,
K.
,
Hellat
,
J.
, and
Koch
,
H.
, 2005, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,” ASME Paper No. GT2005-68269.
2.
Sato
,
H.
,
Mori
,
M.
, and
Nakamura
,
T.
, 1998, “
Development of a Dry Ultra-Low NOx Double Swirler Staged Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
41
47
.
3.
Moliere
,
M.
, 2000, “
Stationary Gas Turbines and Primary Energies: A Review of Fuel Influence on Energy and Combustion Performances
,”
Int. J. Therm. Sci.
,
39
, pp.
141
172
.
4.
Braun
,
H.
,
Hoeren
,
A.
,
Schneiders
,
T.
,
Vortmeyer
,
K.
, and
Pfost
,
H.
, 1998, “
Measurement of the Mixing Quality in Premix Combustors
,”
Energy Convers. Manage.
,
39
(
16–18
), pp.
1991
1999
.
5.
Mongia
,
H. C.
, 2008, “
Recent Progress in Comprehensive Modeling of Gas Turbine Combustion
,” AIAA Paper No. 2008-1445.
6.
Caracciolo
,
L.
, and
Rubini
,
P. A.
, 2006, “
Validation of a Partially Premixed Combustion Model for Gas Turbine Applications
,” ASME Paper No. GT2006-90956.
7.
Fluent 6.2 User Manual.
8.
Zhang
,
Y.
, and
Rawat
,
R.
, 2009, “
Simulation of Turbulent Lifted Flames Using a Partially Premixed Coherent Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
031505
.
9.
STAR-CCM+ User Guide, Version 5.04.
10.
Joung
,
D.
, and
Huh
,
K. Y.
, 2010, “
3D RANS Simulation of Turbulent Flow and Combustion in a 5MW Reverse-Flow Type Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
111504
.
11.
Menzies
,
K. R.
, 2005, “
An Evaluation of Turbulent Models for the Isothermal Flow in a Gas Turbine Combustion System
,”
6th International Symposium on Engineering Turbulence Modeling and Experiments
,
Sardinia, Italy
, 23–25, May.
12.
Hsiao
,
G.
, and
Mongia
,
H. C.
, 2003, “
Swirl Cup Modeling, Part 3: Grid Independent Solution With Different Turbulence Models
,” AIAA Paper No. 2003-1349.
13.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
14.
Wolfstein
,
M.
, 1969, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
.
15.
Michaud
,
M. G.
, and
Westmoreland
,
P. R.
, 1992, “
Chemical Mechanisms of NOx Formation for Gas Turbine Conditions
,”
Proceedings of the 24th International Symposium on Combustion
,
The Combustion Institute
,
Sydney, Australia
, July 5–10, 1992, pp.
879
887
.
16.
Corr
,
R. A.
,
Malte
,
P. C.
, and
Marinov
,
N. M.
, 1992, “
Evaluation of NOx Mechanisms for Lean, Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
114
, p.
425
.
17.
Steele
,
R. C.
,
Malte
,
P. C.
,
Nicol
,
D. G.
, and
Kramlich
,
J. C.
, 1995, “
NOx and N2O in Lean-Premixed Jet-Stirred Flames
,”
Combust. Flame
,
100
, pp.
440
449
.
18.
Hanson
,
R. K.
, and
Salimian
,
S.
, 1984, “
Survey of Rate Constants in H/N/O Systems
,”
Combustion Chemistry
,
W. C.
Gardiner
, Jr.
, ed.,
Springer
,
New York
, p.
361
.
19.
Malte
,
P. C.
, and
Pratt
,
D. T.
, 1974, “
Measurement of Atomic Oxygen and Nitrogen Oxides in Jet Stirred Combustion
,”
Proceedings of the 15th International Symposium on Combustion
,
The Combustion Institute
,
Tokyo, Japan
, August 25–31, 1974, pp.
1061
1070
.
20.
De Soete
,
G. G.
, 1975, “
Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen
,”
Proceedings of the 15th International Symposium on Combustion
,
The Combustion Institute
,
Tokyo, Japan
, August 25–31, 1974, pp.
1093
1102
.
21.
Aluri
,
N. K.
,
Sha
,
Q.
,
Muppala
,
S. P. R.
, and
Dinkelacker
,
F.
, 2005, “
Flame Surface Density Models—a Numerical Evaluation
,”
Proceedings of the European Combustion Meeting
,
Louvain-la-Neuve, Belgium
, April 3–6, 2005.
22.
Lefebvre
,
A. H.
, 1983,
Gas Turbine Combustion
,
Hemisphere
,
New York
. pp.
463
–514; 257–
320
.
23.
Gulder
,
O. L.
, 1990, “
Turbulence Premixed Flame Propagation Models for Different Combustion Regimes
,”
Proceedings of the 23rd International Symposium on Combustion
,
The Combustion Institute
,
Orleans, France
, July 22–27, 1990, pp.
743
750
.
24.
Kobayashi
,
H.
,
Seyama
,
K.
,
Hagiwara
,
H.
, and
Ogami
,
Y.
, 2005, “
Burning Velocity Correlation of Methane/Air Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
30
, pp.
827
834
.
25.
Hase
,
K.
, and
Kori
,
Y.
, 1996, “
Effect of Premixing of Fuel Gas and Air on NOx Formation
,”
Fuel
,
75
(
13
), pp.
1509
1514
.
26.
Martelli
,
F.
,
Riccio
,
G.
, and
Benelli
,
G.
, 2001, “
Scaling from Atmospheric Pressure Rig to Full-Scale Pressure for the Emission Measurement from a Gas Turbine Combustor
,” ASME Paper No. 2001-GT-0070.
You do not currently have access to this content.