The development of measurement techniques, which enable temporal and spatial highly resolved density investigations even in harsh environments, is essential. Rayleigh scattering is a noninvasive optical measurement technique permitting such investigations. A Rayleigh-scattering measurement system is set up, providing a new insight into fluid mechanical processes in turbomachines. In this paper, Rayleigh scattering is used for the detection of density oscillations in the optical accessible convergent-divergent outlet nozzle of a small scale combustion test rig at various power consumptions and equivalence ratios. Until now, this part of the combustion chamber is sparsely investigated due to the challenging measurement conditions. The temporal density oscillation inside the nozzle can be shown up to 4 kHz as well as its spatial distribution. Systematic errors of the setup are investigated. Spectra of pressure and density oscillations are compared. Measurements with nonreacting air flow are conducted to study flow induced density fluctuations. Entropy noise related correlations between density and pressure fluctuations are found. Therewith, the builtup Rayleigh-scattering system enables investigations of the presumed region of indirect noise generation.

1.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2004, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations for a Diffusion Burner
,”
Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air
, Vienna, Austria, Jun. 14–17.
2.
Mathison
,
R. M.
, 2009, “
Experimental and Computational Investigation of Inlet Temperature Profile and Cooling Effects on a One and One-Half Stage High-Pressure Turbine Operating at Design-Corrected Conditions
,” Ph.D. thesis, Ohio State University, Columbus, OH.
3.
Marble
,
F. E.
, and
Candel
,
S. M.
, 1977, “
Acoustic Disturbances From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
0022-460X,
55
(
2
), pp.
225
243
.
4.
Bake
,
F.
,
Fischer
,
A.
,
Kings
,
N.
, and
Roehle
,
I.
, 2009,
Investigation of the Correlation of Entropy Waves and Acoustic Emission in Combustion Chambers, Combustion Noise
,
A.
Schwarz
and
J.
Janicka
, eds.,
Springer
,
Berlin
.
5.
Bake
,
F.
,
Kings
,
N.
,
Fischer
,
A.
, and
Roehle
,
I.
, 2009, “
Indirect Combustion Noise: Investigations of Noise Generated by the Acceleration of Flow Inhomogeneities
,”
Acta. Acust. Acust.
1610-1928,
95
(
3
), pp.
461
469
.
6.
Muthukrishnan
,
M.
,
Strahle
,
W. C.
, and
Neale
,
D. H.
, 1978, “
Separation of Hydrodynamic, Entropy and Combustion Noise in a Gas Turbine Combustor
,”
AIAA J.
0001-1452,
16
(
4
), pp.
320
327
.
7.
Guedel
,
A.
, and
Farrando
,
A.
, 1986, “
Experimental Study of Turboshaft Engine Core Noise
,”
J. Aircr.
0021-8669,
23
(
10
), pp.
763
767
.
8.
Tomita
,
E.
,
Hamamoto
,
Y.
, and
Jiang
,
D.
, 1994, “
Temperature and Pressure Histories of End Gas and Knocking Condition in a S.I. Engine
,”
International Symposium COMODIA
, Vol.
94
, pp.
183
189
.
9.
Giuliani
,
F.
,
Leitgeb
,
T.
,
Lang
,
A.
, and
Woisetschläger
,
J.
, 2010, “
Mapping the Density Fluctuations in a Pulsed Air-Methane Flame Using Laser-Vibrometry
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
, p.
031603
.
10.
Settles
,
G. S.
, 2002, “
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
,”
Appl. Mech. Rev.
0003-6900,
55
(
4
), pp.
299
414
.
11.
Albers
,
B. W.
, and
Agrawal
,
A. K.
, 1999, “
Schlieren Analysis of an Oscillating Gas-Jet Diffusion Flame
,”
Combust. Flame
0010-2180,
119
(
1–2
), pp.
84
94
.
12.
Watson
,
K. A.
,
Lyons
,
K. M.
,
Donbar
,
J. M.
, and
Carter
,
C. D.
, 2000, “
Simultaneous Rayleigh Imaging and CH-PLIF Measurements in a Lifted Jet Diffusion Flame
,”
Combust. Flame
0010-2180,
123
(
1–2
), pp.
252
265
.
13.
Stopper
,
U.
,
Aigner
,
M.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stoehr
,
M.
, and
Kim
,
I.
, 2004, “
Flow Field and Combustion Characterization of Premixed Gas Turbine Flames by Planar Laser Techniques
,”
Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air
, Berlin, Germany, Jun. 9–13.
14.
Lacarelle
,
A.
,
Matho
,
L.
, and
Paschereit
,
C. O.
, 2010, “
Scalar Mixing Enhancement in a Swirl Stabilized Combustor Through Passive and Active Injection Control
,”
48th AIAA Aerospace Sciences Meeting
, Orlando, Jan. 4–7.
15.
Seeger
,
T.
,
Jonuscheit
,
J.
,
Schenk
,
M.
, and
Leipertz
,
A.
, 2003, “
Simultaneous Temperature and Relative Oxygen and Methane Concentration Measurements in a Partially Premixed Sooting Flame Using a Novel CARS-Technique
,”
J. Mol. Struct.
0022-2860,
661–662
, pp.
515
524
.
16.
Grünefeld
,
G.
,
Schütte
,
M.
, and
Andresen
,
P.
, 2000, “
Simultaneous Multiple-Line Raman-Rayleigh-LIF Measurements in Combustion
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
70
, pp.
309
313
.
17.
Miles
,
R. B.
,
Lempert
,
W. R.
, and
Forkey
,
J. N.
, 2001, “
Laser Rayleigh Scattering
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
R33
R51
.
18.
Hoffman
,
D.
,
Muench
,
K. U.
, and
Leipertz
,
A.
, 1996, “
Two-Dimensional Temperature Determination in Sooting Flames by Filtered Rayleigh Scattering
,”
Opt. Lett.
0146-9592,
21
(
7
), pp.
525
527
.
19.
Elliott
,
G. S.
,
Glumac
,
N.
, and
Carter
,
C. D.
, 2001, “
Molecular Filtered Rayleigh Scattering Applied to Combustion
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
452
466
.
20.
Kaldvee
,
B.
,
Ehn
,
A.
,
Bood
,
J.
, and
Alden
,
M.
, 2009, “
Development of a Picosecond-LIDAR System for Large Scale Combustion Diagnostics
,”
Appl. Opt.
0003-6935,
48
, pp.
B65
B72
.
21.
Panda
,
J.
, and
Seasholtz
,
R. G.
, 2002, “
Experimental Investigation of Density Fluctuations in High-Speed Jets and Correlation With Generated Noise
,”
J. Fluid Mech.
0022-1120,
450
, pp.
97
130
.
22.
Miles
,
R. B.
,
Forkey
,
J. N.
, and
Lempert
,
W. R.
, 2002, “
Filtered Rayleigh Scattering Measurements in Supersonic/Hypersonic Facilities
,”
AIAA 17th Aerospace Ground Testing Conference
, Nashville, Jul. 6–8.
23.
Mie
,
G.
, 1908, “
Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen
,”
Ann. Phys. (Leipzig)
,
25
(
4
), pp.
377
445
.
24.
Sutton
,
J. A.
, and
Driscoll
,
J. F.
, 2004, “
Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications
,”
Opt. Lett.
0146-9592,
29
(
22
), pp.
2620
2623
.
25.
Green
,
M. G.
, 1987, “
Developments in Signal Analysis for Laser Rayleigh Scattering
,”
J. Phys. E
0022-3735,
20
, pp.
670
676
.
26.
Schemel
,
C.
, 2003, “
Modellierung und numerische Simulation der Entstehung und Ausbreitung von Schall durch Entropiewellen in beschleunigten Rohrströmungen
,” MS thesis, Technische Universität Berlin, Berlin.
27.
Fischer
,
A.
,
Bake
,
F.
,
Heinze
,
J.
,
Diers
,
O.
,
Willert
,
C.
, and
Roehle
,
I.
, 2009, “
Off-Line Phase-Averaged Particle Image Velocimetry and OH Chemiluminescence Measurements Using Acoustic Time Series
,”
Meas. Sci. Technol.
0957-0233,
20
, p.
075403
.
28.
Duan
,
X. R.
,
Meier
,
W.
,
Weigand
,
P.
, and
Lehmann
,
B.
, 2005, “
Phase-Resolved Laser Raman Scattering and Laser Doppler Velocimetry Applied to Periodic Instabilities in a Gas Turbine Model Combustor
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
80
, pp.
389
396
.
29.
Fischer
,
A.
,
Bake
,
F.
, and
Roehle
,
I.
, 2008, “
Broadband Entropy Noise Phenomena in a Gas Turbine Combustor
,”
Proceedings of ASME
, Berlin.
30.
Eckstein
,
J.
, 2004, “
On the Mechanisms of Combustion Driven Low-Frequency Oscillations in Aero-Engines
,” Ph.D. thesis, Technische Universitaet, Muenchen.
You do not currently have access to this content.