Ceramic gas turbine development that started in the 1950s has slowed considerably since most of the large-scale ceramic gas turbine development programs of the 1970s–1990s ended. While component durability still does not meet expectations, the prospect of significant energy savings and emission reductions, potentially achievable with ceramic gas turbines, continues to justify development efforts. Four gas turbine applications have been identified that could be commercially attractive: a small recuperated gas turbine (microturbine) with 35% electrical efficiency, a recuperated gas turbine for transportation applications with 40% electrical efficiency with potential applications for efficient small engine cogeneration, a 40% efficient midsize industrial gas turbine, and a 63% (combined cycle) efficient utility turbine. Key technologies have been identified to ensure performance and component durability targets can be met over the expected life cycle for these applications. These technologies include a Si3N4 or SiC with high fracture toughness, durable EBCs for Si3N4 and SiC, an effective EBC∕TBC for SiCSiC, a durable oxide∕oxide ceramic matrix composite (CMC) with thermally insulating coating, and the next generation CMCs with high strength that can be used as structural materials for turbine components for small engines and for rotating components in engines of various sizes. The programs will require integrated partnerships between government, national laboratories, universities, and industry. The overall cost of the proposed development programs is estimated at U.S. $100M over 10years, i.e., an annual average of U.S. $10M.

1.
2002, “
Ceramic Gas Turbine Design and Test Experience
,”
Progress in Ceramic Gas Turbine Development
, Vol.
I
,
M.
van Roode
,
M. K.
Ferber
,
D. W.
Richerson
, eds.,
ASME
,
New York
.
2.
2003, “
Ceramic Gas Turbine Component Development and Characterization
,”
Progress in Ceramic Gas Turbine Development
, Vol.
II
,
M.
van Roode
,
M. K.
Ferber
,
D. W.
Richerson
, eds.,
ASME
,
New York
.
3.
Richerson
,
D. W.
, 2004, “
Ceramic Components in Gas Turbine Engines: Why Has It Taken so Long?
,”
Ceram. Eng. Sci. Proc.
0196-6219,
25
(
3
),
3
32
.
4.
Richerson
,
D. W.
, 2006, “
Historical Review of Addressing the Challenges of Use of Ceramic Components in Gas Turbine Engines
,” ASME Paper No. GT2006-90330.
5.
van Roode
,
M.
, and
Ferber
,
M. K.
, 2007, “
Long-Term Degradation of Ceramics for Gas Turbine Applications
,” ASME Paper No. GT2007-27956.
6.
DiCarlo
,
J. A.
, and
van Roode
,
M.
, 2006, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,” ASME Paper No. GT2006-90151.
7.
Energetics, Incorporated, and Richerson and Associates
, 2000, “
Advanced Ceramics Technology Roadmap—Charting Our Course—Sponsored by the United States Advanced Ceramics Association and the U.S. Department of Energy
.”
8.
Veitch
,
L. C.
, and
Hong
,
W. S.
, 2001, “
Will Pigs Fly Before Ceramics Do?
,”
Ceram. Eng. Sci. Proc.
0196-6219,
22
(
3
),
31
37
.
9.
van Roode
,
M.
,
Price
,
J. R.
,
Kimmel
,
J.
,
Miriyala
,
N.
,
Leroux
,
D.
,
Fahme
,
A.
, and
Smith
,
K.
, 2005, “
Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
129
(
1
),
21
30
.
10.
Lane
,
J. E.
,
Morrison
,
J. A.
,
Marini
,
B.
, and
Campbell
,
C. X.
, 2007, “
Hybrid Oxide CMC Mitigates the Design Hurdles Typically Seen for Oxide CMC
,” ASME Paper No. GT2007-27532.
11.
van Roode
,
M.
,
Price
,
J.
,
Otsuka
,
J.
,
Szweda
,
A.
,
More
,
K.
, and
Sun
,
J.
, 2008, “
25,000Hour Hybrid Oxide CMC Field Test Summary
,” ASME Paper No. GT2008-51379.
12.
Corman
,
G.
,
Luthra
,
K.
,
Mitchell
,
D.
,
Meschter
,
R.
,
Nimmer
,
R.
,
Bruce
,
K.
, and
Landini
,
D.
, 2004, “
Melt Infiltrated CMC Gas Turbine Shroud Development and Testing
,” presented at the
28th Annual Conference on Composites, Materials and Structures
,
Cocoa Beach, FL
.
13.
McDonald
,
C. F.
, and
Rogers
,
C.
, 2005, “
Ceramic Recuperator and Turbine: The Key to Achieving a 40% Efficient Microturbine
,” ASME Paper No. GT2005-68644.
14.
Haught
,
D.
, 2005, “
Microturbines and Small Gas Turbines Technology: Progress and Challenges
,” panel presentation at the
2005 ASME TURBO EXPO
,
Reno, NV
, Jun. 6–9.
15.
Tatsumi
,
T.
, 2002, “
Development of the 300kW Ceramic Gas Turbine CGT302
,”
Progress in Ceramic Gas Turbine Development
,
ASME
,
New York
, Chap. 15, pp.
331
360
.
16.
2006 GTW Handbook
,” Vol.
25
, Section 3, Specifications.
17.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
, 1998, “
The Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
123
(
3
),
508
512
.
18.
Kizuka
,
N.
,
Sagae
,
K.
,
Anzai
,
S.
,
Ikeguchi
,
T.
, and
Kawaike
,
K.
, 1999, “
Test Results of Closed-Circuit Cooled Blades for 1700°C Hydrogen-Fueled Combustion Gas Turbines
,”
Proceedings of the International Gas Turbine Congress
,
T.
Tamaru
, ed.,
Kobe, Japan
, Nov. 14–19, Vol.
1
, pp.
343
350
.
19.
Mankins
,
J. C.
, 1995, “
Technology Readiness Levels
,” White Paper.
20.
Bryce Roth
,
M. G.
,
Graham
,
M.
, and
Mavris
,
D.
, 2002, “
Adaptive Selection of Aircraft Engine Technologies in the Presence of Risk
,” ASME Paper No. GT-2002-30623.
21.
Carruthers
,
W. D.
,
van Roode
,
M.
,
Becher
,
P. F.
,
Ferber
,
M. K.
, and
Pollinger
,
J.
, 2002, “
Advances in the Development of Silicon Nitride and Other Ceramics
,” ASME Paper No. GT-2002-30504.
22.
Bhatia
,
T.
,
Srinivasan
,
G. V.
,
Tulyani
,
S. V.
,
Barth
,
R. A.
,
Vedula
,
V. R.
, and
Tredway
,
W. K.
, 2007, “
Environmental Barrier Coatings for Monolithic Silicon Nitride-Bond Coat Development
,” ASME Paper No. GT2007-27685.
23.
Fukudome
,
T.
,
Tsuruzono
,
S.
,
Tatsumi
,
T.
,
Ichikawa
,
Y.
,
Hisamatsu
,
T.
, and
Yuri
,
I.
, 2005, “
Development and Evaluation of Ceramic Components and EBCs for Gas Turbine
,”
Ceram. Eng. Sci. Proc.
0196-6219,
26
(
3
),
147
157
.
24.
Fukudome
,
T.
,
Tsuruzono
,
S.
,
Tatsumi
,
T.
,
Ichikawa
,
Y.
,
Hisamatsu
,
T.
, and
Yuri
,
I.
, 2005, “
Development of Silicon Nitride Components for Gas Turbine
,”
Key Eng. Mater.
1013-9826,
287
,
10
15
.
25.
Vedula
,
V.
,
Shi
,
J.
,
Jarmon
,
D.
,
Ochs
,
S.
,
Oni
,
L.
,
Lawton
,
T.
,
Green
,
K.
,
Prill
,
L.
,
Schaff
,
J.
,
Linsey
,
G.
, and
Zadrozny
,
G.
, 2005, “
Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines
,” ASME Paper No. GT2005-68229.
26.
Verrilli
,
M.
,
Calamino
,
A.
,
Robinson
,
R. C.
, and
Thomas
,
D. J.
, 2006, “
Ceramic Matrix Composite Vane Subelement Testing in Gas Turbine Environment
,” ASME Paper No. GT2004-53970.
27.
Nakagawa
,
N.
,
Ohtsubo
,
H.
,
Shibata
,
K.
,
Mitani
,
A.
,
Shimizu
,
K.
, and
Waku
,
Y.
, 2005, “
High Temperature Stability of MGC’s Gas Turbine Components in Combustion Gas Flow Environments
,” ASME Paper No. GT2005-68568.
28.
Klemm
,
H.
,
Fritsch
,
M.
, and
Schenk
,
B.
, 2004, “
Corrosion of Materials in Hot Gas Environment
,”
Ceram. Eng. Sci. Proc.
0196-6219,
25
(
4
),
463
468
.
29.
Morscher
,
G. N.
,
Chen
,
K. C.
, and
Mazdiyasni
,
K. S.
, 1995, “
Creep-Resistance of Developmental Polycrystalline Yttrium-Aluminum Garnet Fibers
,”
Ceram. Eng. Sci. Proc.
0196-6219,
15
(
4
),
181
188
.
You do not currently have access to this content.