Large eddy simulations (LES) are performed for single and multiphase jets in crossflow (JICF). The multiphase JICF are compared to the single-phase case for the same momentum and mass flow ratios but with droplets of different sizes. Multiphase JICF have stronger counterrotating vortex pairs (CVPs) than a corresponding single-phase JICF. Moreover, their trajectories are higher and their induced wakes weaker. The smaller the Stokes number of the droplets, the more the solution approaches the solution for single-phase flow. The computed results show the formation of a CVP and horseshoe vortices, which are convected downstream. LES also reveals the intermittent formation of upright wake vortices from the horseshoe vortices on the ground toward the CVP. The dispersion of polydisperse spray droplets is computed using the stochastic parcel method. Atomization and droplet breakup are modeled by a combination of the breakup model by Reitz and the Taylor analogy breakup model (see Caraeni, D., Bergström, C., and Fuchs, L., 2000, Flow, Turbul. Combust., 65(2), pp. 223–244). Evaporation and droplet collision are also modeled. The flow solver uses two-way coupling. Averages of the velocity and gaseous fuel mass fraction are computed. The single-phase JICF is validated against experimental data obtained by PIV. Additionally, the PDFs and frequency spectra are presented.

1.
Fric
,
T.
, and
Roshko
,
A.
, 1994, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
0022-1120,
279
, pp.
1
47
.
2.
Yuan
,
L.
,
Street
,
R.
, and
Ferziger
,
J.
, 1999, “
Large-Eddy Simulation of a Round Jet in Crossflow
,”
J. Fluid Mech.
0022-1120,
379
, pp.
71
104
.
3.
Joeng
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
4.
Smith
,
S.
, and
Mungal
,
M.
, 1998, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
0022-1120,
357
, pp.
83
122
.
5.
Kelso
,
R.
,
Lim
,
T.
, and
Perry
,
A.
, 1996, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
0022-1120,
306
, pp.
111
144
.
6.
Kelso
,
R.
, and
Smits
,
A.
, 1995, “
Horseshoe Vortex Systems Resulting from the Interaction Between a Laminar Boundary Layer and a Transverse Jet
,”
Phys. Fluids
1070-6631,
7
(
1
), pp.
153
158
.
7.
Andreopoulos
,
J.
, and
Rodi
,
W.
, 1984, “
Experimental Investigation of Jets in Crossflow
,”
J. Fluid Mech.
0022-1120,
138
, pp.
93
127
.
8.
Haven
,
B.
, and
Kurosaka
,
M.
, 1997, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
0022-1120,
352
, pp.
27
64
.
9.
Hasselbrink
,
E.
, and
Mungal
,
M.
, 2001, “
Tranverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging
,”
J. Fluid Mech.
0022-1120,
443
, pp.
27
68
.
10.
Sykes
,
R.
,
Lewellen
,
W.
, and
Parker
,
S.
, 1986, “
On the Vorticity Dynamics of a Turbulent Jet in a Crossflow
,”
J. Fluid Mech.
0022-1120,
168
, pp.
393
413
.
11.
Alvarez
,
J.
,
Jones
,
W.
, and
Seoud
,
R.
, 1993, “
Predictions of Momentum and Scalar Fields in a Jet in Cross-Flow Using First and Second Order Turbulence Closures
,”
Comp. and Exp. Assessment of Jets in Cross Flow
, AGARD, CP-534, pp.
21
-1–24-
10
.
12.
Schlüter
,
J.
, and
Schönfeld
,
T.
, 2000, “
LES of Jets in Cross Flow and Its Application to a Gas Turbine Burner
,”
Flow, Turbul. Combust.
1386-6184,
65
, pp.
177
203
.
13.
Priere
,
C.
,
Gicquel
,
L.
,
Kaufmann
,
P.
,
Krebs
,
W.
, and
Poinsot
,
T.
, 2004, “
Large Eddy Simulation Predictions of Mixing Enhancement for Jets in Cross-Flows
,”
ASME J. Turbomach.
0889-504X,
5
(
005
), pp.
1
24
.
14.
Cortelezzi
,
L.
, and
Karagozian
,
A.
, 2001, “
On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets
,”
J. Fluid Mech.
0022-1120,
446
, pp.
347
373
.
15.
Wu
,
P.-K.
,
Kirkendall
,
K.
,
Fuller
,
R.
, and
Nejad
,
A.
, 1997, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
0748-4658,
13
(
1
), pp.
64
73
.
16.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
, 2002, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosol Sci. Technol.
0278-6826,
6
, pp.
495
506
.
17.
Madabhushi
,
R.
, 2003, “
A Model for Numerical Simulation of Breakup of a Liquid Jet in Crossflow
,”
Atomization Sprays
1044-5110,
13
, pp.
413
324
.
18.
Caraeni
,
D.
,
Bergström
,
C.
, and
Fuchs
,
L.
, 2000, “
Modeling of Liquid Fuel Injection, Evaporation and Mixing in a Gas Turbine Burner Using Large Eddy Simulation
,”
Flow, Turbul. Combust.
1386-6184,
65
, pp.
223
244
.
19.
Ghosh
,
S.
, and
Hunt
,
J.
, 1998, “
Spray Jets in a Cross-Flow
,”
J. Fluid Mech.
0022-1120,
365
, pp.
109
136
.
20.
Wu
,
P.-K.
,
Kirkendall
,
K.
,
Fuller
,
R.
, and
Nejad
,
A.
, 1998, “
Spray Structures of Liquid Jets Atomized in Subsonic Cross-Flows
,”
J. Propul. Power
0748-4658,
14
(
2
), pp.
173
182
.
21.
Leong
,
M.
,
McDonnell
,
V.
, and
Samuelsen
,
G.
, 2001, “
Effect of Ambient Pressure on an Airblast Spray Injected into a Crossflow
,”
J. Propul. Power
0748-4658,
17
(
5
), pp.
1076
1084
.
22.
Fuller
,
R.
,
Wu
,
P.-K.
,
Kirkendall
,
K.
, and
Nejad
,
A.
, 2000, “
Effects of Injection Angle on Atomization of Liquid in Transverse Airflow
,”
AIAA J.
0001-1452,
38
(
1
), pp.
64
72
.
23.
Westerweel
,
J.
, 2000, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
(
7
), pp.
S003
S012
.
24.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
, 1996, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
0021-9991,
126
, pp.
202
228
.
25.
Amsden
,
A.
,
O’Rourke
,
P.
, and
Butler
,
T.
, 1989, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,”
Los Alamos National Laboratory
, Tech. Rep. No. LA-11560-MS.
26.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
, 1997,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.