This study presents a novel multiobjective genetic-algorithm approach to produce a new reduced chemical kinetic reaction mechanism to simulate aviation fuel combustion under various operating conditions. The mechanism is used to predict the flame structure of an aviation fuel/O2N2 flame in both spatially homogeneous and one-dimensional premixed combustion. Complex hydrocarbon fuels, such as aviation fuel, involve large numbers of reaction steps with many species. As all the reaction rate data are not well known, there is a high degree of uncertainty in the results obtained using these large detailed reaction mechanisms. In this study a genetic algorithm approach is employed for determining new reaction rate parameters for a reduced reaction mechanism for the combustion of aviation fuel-air mixtures. The genetic algorithm employed incorporates both perfectly stirred reactor and laminar premixed flame data in the inversion process, thus producing an efficient reaction mechanism. This study provides an optimized reduced aviation fuel-air reaction scheme whose performance in predicting experimental major species profiles and ignition delay times is not only an improvement on the starting reduced mechanism but also on the full mechanism.

1.
Dixon-Lewis
,
G.
,
Goldsworthy
,
F. A.
, and
Greenberg
,
J. B.
, 1975, “
Flame Structure and Flame Reaction Kinetics. IX: Calculation of Properties of Multi-Radical Premixed Flames
,”
Proc. R. Soc. London, Ser. A
1364-5021,
346
, pp.
261
275
.
2.
Dagaut
,
P.
,
Reuillon
,
M.
,
Boetner
,
J.-C.
, and
Cathonnet
,
M.
, 1994, “
Kerosene Combustion at Pressures up to 40atm: Experimental Study and Detailed Chemical Kinetic Modelling
,”
Proceedings of the Combustion Institute
,
Combustion Institute
, Pittsburgh, Vol. 25, pp.
919
926
.
3.
Gueret
,
C.
,
Cathonet
,
M.
,
Boettner
,
J. C.
, and
Gaillard
,
F.
, 1990, “
Experimental Study and Modelling of Kerosene Oxidation in a Jet-Stirred Flow Reactor
,”
Proc. of 23rd Int. Symp. on Combustion
,
Combustion Institute
, Pittsburgh, pp.
211
216
.
4.
Douté
,
C.
,
Delfau
,
J. L.
,
Akrich
,
R.
, and
Vovelle
,
C.
, 1995, “
Chemical Structure of Atmopheric Pressure Premixed n-Decane and Kerosene Flames
,”
Combust. Sci. Technol.
0010-2202,
106
, pp.
327
344
.
5.
Patterson
,
P. M.
,
Kyne
,
A. G.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Wilson
,
C. W.
, 2000, “
Combustion of Kerosene in Counterflow Diffusion Flames
,”
J. Propul. Power
0748-4658,
16
, pp.
453
460
.
6.
Bédat
,
B.
,
Egolfopoulos
,
F.
, and
Poinsot
,
T.
, 1999, “
Direct Numerical Simulation of Heat Release and NOx Formation in Turbulent Non Premixed Flames
,”
Combust. Flame
0010-2180,
119
(
1/2
), pp.
69
83
.
7.
Kyne
,
A. G.
,
Patterson
,
P. M.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Wilson
,
C. J.
, 2001, “
Prediction of Premixed Laminar Flame Structure and Burning Velocity of Aviation Fuel-Air Mixtures
,”
Proc. of ASME Turbo Expo2001: Land, Sea and Air
, June 4–7, New Orleans, ASME, New York.
8.
Milstein
,
J.
, 1981, “
The Inverse Problem: Estimation of Kinetic Parameters
,”
Modelling of Chemical Reaction Systems
,
K. H.
Ezbert
,
P.
Deuflhard
, and
W.
Jager
, eds.,
Springer
, Berlin.
9.
Bock
,
H. G.
, 1981, “
Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics
,”
Modelling of Chemical Reaction Systems
,
K. H.
Ezbert
,
P.
Deuflhard
, and
W.
Jager
, eds.,
Springer
, Berlin.
10.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
J.
, 1992, “
Optimisation and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method: Combustion of Methane
,”
Prog. Energy Combust. Sci.
0360-1285,
18
, pp.
47
73
.
11.
Polifke
,
W.
,
Geng
,
W.
, and
Döbbeling
,
K.
, 1998, “
Optimisation of Rate Coefficients for Simplified Reaction Mechanisms With Genetic Algorithms
,”
Combust. Flame
0010-2180,
113
pp.
119
135
.
12.
Harris
,
S. D.
,
Elliott
,
L.
,
Ingham
,
D. B.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
, 2000, “
The Optimisation of Reaction Rate Parameters for Chemical Kinetic Modelling of Combustion Using Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1065
1090
.
13.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
, 2003, “
Multi-Objective Genetic Algorithms Optimisation for Calculating the Reaction Rate Coefficients for Hydrogen Combustion
,”
Ind. Eng. Chem. Res.
0888-5885,
42
(
6
), pp.
1215
1224
.
14.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
, 1988, “
PSR: A FORTRAN Program for Modelling Well-Stirred Reactors
,” Sandia Report SAND86–8209,
Sandia National Laboratories
.
15.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
, 1985, “
A Fortran Program for Modelling Steady One-Dimensional Premixed Flames
,” Sandia Report SAND85–8240,
Sandia National Laboratories
.
16.
Kee
,
R. J.
,
Miller
,
J. A.
, and
Jefferson
,
T. H.
, 1980, “
CHEMKIN: A General-Purpose, Problem-Independent, Transport Table, FORTRAN Chemical Kinetics Code Package
,” Sandia Report SAND80–8003,
Sandia National Laboratories
.
17.
Michalewicz
,
Z.
, 1996,
Genetic Algorithms/Data Structures/Evolution Programs
, Third Edition,
Springer
, Berlin.
18.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
, 2003, “
Incorporation of Physical Bounds on Rate Parameters for Reaction Mechanism Optimisation Using Genetic Algorithms
,”
Combust. Sci. Technol.
0010-2202,
175
(
4
), pp.
619
648
.
19.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1987, “
SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,” Sandia Report SAND87–8248,
Sandia National Laboratories
.
You do not currently have access to this content.