Abstract

The efficiency gains observed in a pair of closely spaced Darrieus turbines suggest the deployment of multiple turbines as an appealing solution for wind and, particularly, hydrokinetic applications, where the inflow direction is constant. The present study develops some design guidelines for closely spaced hydrokinetic Darrieus turbines by analyzing the trends of both power augmentation and wake development within arrays of multiple rotors, including not only an even number of rotors, which is the usual case in literature, but also an odd one. The analysis is carried out by means of two-dimensional computational fluid dynamics simulations and includes not only the assessment of instantaneous blade forces but also locally sampled flow fields past each blade that allowed the reconstruction of dynamic polar data, contributing to a more comprehensive understanding of the physical mechanisms at play in such compact setups. The study demonstrates a consistent power augmentation mechanism across different layouts, even in the case of an odd number of rotors. This enhancement originates from flow blockage in the mutual interaction areas, favorably altering the inflow angle and subsequently increasing the angle of attack and lift generation. While this mechanism aligns with previous observations on arrays of counter-rotating pairs, its application to multiple turbines introduces complexities due to potential asymmetries in inflow, leading to an uneven power enhancement across turbines within the array. The identified efficiency improvement pattern suggests that maximizing leeward mutual interactions within an array of multiple Darrieus turbines would enhance the overall efficiency of the setup.

References

1.
Fadil
,
J.
,
Soedibyo
., and
Ashari
,
M.
,
2017
, “
Performance Comparison of Vertical Axis and Horizontal Axis Wind Turbines to Get Optimum Power Output
,”
15th International Conference on Quality in Research (QiR) International Symposium on Electrical and Computer Engineering
, July 24–27, Bali, Indonesia, pp.
429
433
.
2.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renewable Sustainable Energy
,
3
(
4
), p.
043104
.10.1063/1.3608170
3.
Vergaerde
,
A.
,
De Troyer
,
T.
,
Standaert
,
L.
,
Kluczewska-Bordier
,
J.
,
Pitance
,
D.
,
Immas
,
A.
,
Silvert
,
F.
, and
Runacres
,
M. C.
,
2020
, “
Experimental Validation of the Power Enhancement of a Pair of Vertical-Axis Wind Turbines
,”
Renewable Energy
,
146
, pp.
181
187
.10.1016/j.renene.2019.06.115
4.
Li
,
S.
,
Li
,
Y.
,
Yang
,
C.
,
Wang
,
Q.
,
Zhao
,
B.
,
Li
,
D.
,
Zhao
,
R.
,
Ren
,
T.
,
Zheng
,
X.
,
Gao
,
Z.
, and
Xu
,
W.
,
2021
, “
Experimental Investigation of Solidity and Other Characteristics on Dual Vertical Axis Wind Turbines in an Urban Environment
,”
Energy Convers. Manage.
,
229
, p.
113689
.10.1016/j.enconman.2020.113689
5.
Müller
,
S.
,
Muhawenimana
,
V.
,
Wilson
,
C.
, and
Ouro
,
P.
,
2021
, “
Experimental Investigation of the Wake Characteristics Behind Twin Vertical Axis Turbines
,”
Energy Convers. Manage.
,
247
, p.
114768
.10.1016/j.enconman.2021.114768
6.
Zanforlin
,
S.
, and
Nishino
,
T.
,
2016
, “
Fluid Dynamic Mechanisms of Enhanced Power Generation by Closely Spaced Vertical Axis Wind Turbines
,”
Renewable Energy
,
99
, pp.
1213
1226
.10.1016/j.renene.2016.08.015
7.
Alexander
,
A. S.
, and
Santhanakrishnan
,
A.
,
2020
, “
Mechanisms of Power Augmentation in Two Side-by-Side Vertical Axis Wind Turbines
,”
Renewable Energy
,
148
, pp.
600
610
.10.1016/j.renene.2019.10.149
8.
Mohamed
,
O. S.
,
Melani
,
P. F.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2023
, “
An Insight on the Physical Mechanisms Responsible for Power Augmentation in a Pair of Counter-Rotating Darrieus Turbines
,”
Energy Convers. Manage.
,
284
, p.
116991
.10.1016/j.enconman.2023.116991
9.
Mohamed
,
O. S.
,
Ibrahim
,
A.
, and
El Baz
,
A. M. R.
,
2019
, “
CFD Investigation of the Multiple Rotors Darrieus Type Turbine Performance
,”
ASME
Paper No. GT2019-9149.10.1115/GT2019-9149
10.
Zheng
,
H.-D.
,
Zheng
,
X. Y.
, and
Zhao
,
S. X.
,
2020
, “
Arrangement of Clustered Straight-Bladed Wind Turbines
,”
Energy
,
200
, p.
117563
.10.1016/j.energy.2020.117563
11.
Zhao
,
P.
,
Jiang
,
Y.
,
Liu
,
S.
,
Stoesser
,
T.
,
Zou
,
L.
, and
Wang
,
K.
,
2021
, “
Investigation of Fundamental Mechanism Leading to the Performance Improvement of Vertical Axis Wind Turbines by Deflector
,”
Energy Convers. Manage.
,
247
, p.
114680
.10.1016/j.enconman.2021.114680
12.
Parneix
,
N.
,
Fuchs
,
R.
,
Immas
,
A.
, and
Silvert
,
F.
,
2016
, “
Efficiency Improvement of Vertical-Axis Wind Turbines With Counter-Rotating Layout
,”
Proceedings of the WindEurope Annual Event
, Hamburg, Germany, Sept. 27–29, pp.
1
8
.https://windeurope.org/summit2016/conference/allfiles2/272_WindEurope2016presentation.pdf
13.
Cacciali
,
L.
,
Battisti
,
L.
, and
Dell'Anna
,
S.
,
2023
, “
Multi-Array Design for Hydrokinetic Turbines in Hydropower Canals
,”
Energies
,
16
(
5
), p.
2279
.10.3390/en16052279
14.
Mohamed
,
O. S.
,
Melani
,
P. F.
,
Soraperra
,
G.
,
Brighenti
,
A.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2024
, “
Design Guidelines for Arrays of Closely Spaced Darrieus Turbines
,”
ASME
Paper No. GT2024-121978.10.1115/GT2024-121978
15.
Mohamed
,
O. S.
,
Melani
,
P. F.
,
Soraperra
,
G.
,
Brighenti
,
A.
,
Betti
,
V.
,
Schippa
,
L.
,
Guerrero
,
M.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2024
, “
Three-Dimensional CFD-ALM-VOF Modeling of Hydrokinetic Turbines in Realistic Open-Channel Conditions
,”
Ocean Eng.
,
313
(
2
), p.
119411
.10.1016/j.oceaneng.2024.119411
16.
Melani
,
P. F.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2021
, “
Development of a Desmodromic Variable Pitch System for Hydrokinetic Turbines
,”
Energy Convers. Manage.
,
250
, p.
114890
.10.1016/j.enconman.2021.114890
17.
Mohamed
,
O. S.
,
Melani
,
P. F.
,
Papi
,
F.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2023
, “
Is the Actuator Line Method Able to Reproduce the Interaction Between Closely-Spaced Darrieus Rotors? A Critical Assessment on Wind and Hydrokinetic Turbines
,”
Energy Convers. Manage.
,
293
, p.
117473
.10.1016/j.enconman.2023.117473
18.
Balduzzi
,
F.
,
Melani
,
P. F.
,
Soraperra
,
G.
,
Brighenti
,
A.
,
Battisti
,
L.
, and
Bianchini
,
A.
,
ATI Italian Termotecnics Association
2021
, “
Some Design Guidelines to Adapt a Darrieus Vertical Axis Turbine for Use in Hydrokinetic Applications
,”
E3S Web Conf.
,
312
, p.
08017
.10.1051/e3sconf/202131208017
19.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.10.1016/j.renene.2015.06.048
20.
Campobasso
,
M. S.
,
Yan
,
M.
,
Bonfiglioli
,
A.
,
Gigante
,
F. A.
,
Ferrari
,
L.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2018
, “
Low-Speed Preconditioning for Strongly Coupled Integration of Reynolds-Averaged Navier–Stokes Equations and Two-Equation Turbulence Models
,”
Aerosp. Sci. Technol.
,
77
, pp.
286
298
.10.1016/j.ast.2018.03.015
21.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.10.1016/j.energy.2015.12.111
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
23.
Ibrahim
,
A. A.
,
Elbaz
,
A. M. R.
,
Melani
,
P. F.
,
Mohamed
,
O. S.
, and
Bianchini
,
A.
,
2022
, “
Power Augmentation of Darrieus Wind Turbine Blades Using Trapped Vortex Cavity
,”
J. Wind Eng. Ind. Aerodyn.
,
223
, p.
104949
.10.1016/j.jweia.2022.104949
24.
Wang
,
Y.
,
Sun
,
X. J.
,
Zhu
,
B.
,
Zhang
,
H. J.
, and
Huang
,
D. G.
,
2016
, “
Effect of Blade Vortex Interaction on Performance of Darrieus-Type Cross Flow Marine Current Turbine
,”
Renewable Energy
,
86
, pp.
316
323
.10.1016/j.renene.2015.07.089
25.
Jost
,
E.
,
Klein
,
L.
,
Leipprand
,
H.
,
Lutz
,
T.
, and
Krämer
,
E.
,
2018
, “
Extracting the Angle of Attack on Rotor Blades From CFD Simulations
,”
Wind Energy
,
21
(
10
), pp.
807
822
.10.1002/we.2196
26.
Melani
,
P. F.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Bianchini
,
A.
,
2020
, “
How to Extract the Angle Attack on Airfoils in Cycloidal Motion From a Flow Field Solved With Computational Fluid Dynamics? Development and Verification of a Robust Computational Procedure
,”
Energy Convers. Manage.
,
223
, p.
113284
.10.1016/j.enconman.2020.113284
27.
Mohamed
,
O. S.
,
Elbaz
,
A. M. R.
, and
Bianchini
,
A.
,
2021
, “
A Better Insight on Physics Involved in the self-Starting of a Straight-Blade Darrieus Wind Turbine by Means of Two-Dimensional Computational Fluid Dynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
218
, p.
104793
.10.1016/j.jweia.2021.104793
28.
Khosravi
,
M.
,
Sarkar
,
P.
, and
Hu
,
H.
,
2016
, “
An Experimental Investigation on the Near Wake Characteristics of a Darrieus Vertical-Axis Wind Turbine
,”
AIAA
Paper No. 2016-1732.10.2514/6.2016-1732
29.
Hara
,
Y.
,
Jodai
,
Y.
,
Okinaga
,
T.
, and
Furukawa
,
M.
,
2021
, “
Numerical Analysis of the Dynamic Interaction Between Two Closely Spaced Vertical-Axis Wind Turbines
,”
Energies
,
14
(
8
), p.
2286
.10.3390/en14082286
30.
Sahebzadeh
,
S.
,
Rezaeiha
,
A.
, and
Montazeri
,
H.
,
2022
, “
Vertical-Axis Wind-Turbine Farm Design: Impact of Rotor Setting and Relative Arrangement on Aerodynamic Performance of Double Rotor Arrays
,”
Energy Rep.
,
8
, pp.
5793
5819
.10.1016/j.egyr.2022.04.030
31.
Nazari
,
S.
,
Zamani
,
M.
, and
Moshizi
,
S. A.
,
2018
, “
Comparison Between Two-Dimensional and Three-Dimensional Computational Fluid Dynamics Techniques for Two Straight-Bladed Vertical-Axis Wind Turbines in Inline Arrangement
,”
Wind Eng.
,
42
(
6
), pp.
647
664
.10.1177/0309524X18780384
You do not currently have access to this content.