Abstract

Information on bubble distributions in liquids is required for various applications. Employment of inverse acoustic scattering is the usual path to determine these distributions. This path is based on solving a Fredholm first kind integral equation leading to an ill-posed mathematical problem. The usual regularization methods for such a problem are quite complex and require introduction of some tuning parameters. Meanwhile, as shown in this paper, another method works well for media, where acoustic waves propagate with the small losses. This method is based on extraction of a singular Cauchy integral in the above-mentioned equation and of the further inversion of this integral. Such a regularization via inversion is a simple operation that gives numerically stable solutions. Here, this regularization is described, verified using the method of manufactured solutions, and validated with the well-known already published experimental data.

References

1.
Schiebe
,
F. R.
,
1969
,
The Influence of Gas Nuclei Size Distribution on Transient Cavitation Near Inception
, SALF Report, Report No. 107.
2.
Buckingham
,
M. J.
,
1997
, “
Sound Speed and Void Fraction Profiles in the Sea Surface Bubble Layer
,”
Appl. Acoust.
,
51
(
3
), pp.
225
250
.10.1016/S0003-682X(97)00002-9
3.
Wang
,
Y.-C.
,
1999
, “
Effects of Nuclei Size Distribution on the Dynamics of a Spherical Cloud of Cavitation Bubbles
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
881
886
.10.1115/1.2823550
4.
Johansen
,
J. P.
,
Castro
,
A. M.
, and
Carrica
,
P. M.
,
2010
, “
Full-Scale Two-Phase Flow Measurements on Athena Research Vessel
,”
Int. J. Multiphase Flows
,
36
(
9
), pp.
720
737
.10.1016/j.ijmultiphaseflow.2010.05.002
5.
Akulichev
,
V. A.
, and
Bulanov
,
V. A.
,
2011
, “
Measurements of Bubbles in Sea Water by Nonstationary Sound Scattering
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
3438
3449
.10.1121/1.3636371
6.
Mørch
,
K. A.
,
2015
, “
Cavitation Inception From Bubble Nuclei
,”
Interface Focus
,
5
(
5
), p.
20150006
.10.1098/rsfs.2015.0006
7.
Czarnecki
,
K.
,
Fouan
,
D.
,
Achaoui
,
Y.
, and
Mensah
,
S.
,
2015
, “
Fast Bubble Dynamics and Sizing
,”
J. Sound Vib.
,
356
, pp.
48
60
.10.1016/j.jsv.2015.06.038
8.
Perret
,
M.
, and
Carrica
,
P. M.
,
2015
, “
Bubble–Wall Interaction and Two-Phase Flow Parameters on a Full-Scale Boat Boundary Layer
,”
Int. J. Multiphase Flows
,
73
, pp.
289
308
.10.1016/j.ijmultiphaseflow.2015.03.013
9.
Zhao
,
L.
,
Boufadel
,
M. C.
,
Lee
,
K.
,
King
,
T.
,
Loney
,
N.
, and
Geng
,
X.
,
2016
, “
Evolution of Bubble Size Distribution From Gas Blowout in Shallow Water
,”
J. Geophys. Res: Ocean
,
121
(
3
), pp.
1573
1599
.10.1002/2015JC011403
10.
Vahaji
,
S.
,
Chen
,
L.
,
Cheung
,
S. C. P.
, and
Tu
,
J.
,
2018
, “
Numerical Investigation on Bubble Size Distribution Around an Underwater Vehicle
,”
Appl. Ocean Res.
,
78
, pp.
254
266
.10.1016/j.apor.2018.06.013
11.
Rivera
,
M.
,
López
,
E.
, and
Cancelos
,
S.
,
2021
, “
A Non-Invasive, Low Frequency Resonant Method to Detect Bubbles in Liquid Media
,”
Appl. Acoust.
,
179
, p.
108044
.10.1016/j.apacoust.2021.108044
12.
Commander
,
K. W.
, and
Prosperetti
,
A.
,
1989
, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
732
746
.10.1121/1.397599
13.
Duraiswami
,
R.
,
Prabhukumar
,
S.
, and
Chahine
,
G. L.
,
1998
, “
Bubble Counting Using an Inverse Acoustic Scattering Method
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2699
2717
.10.1121/1.423854
14.
Terrill
,
R. J.
, and
Melville
,
W. K.
,
2000
, “
A Broadband Acoustic Technique for Measuring Bubble Size Distributions: Laboratory and Shallow Water Measurements
,”
J. Atm. Ocean Tech.
,
17
(
2
), pp.
220
239
.10.1175/1520-0426(2000)017<0220:ABATFM>2.0.CO;2
15.
Ando
,
K.
,
Colonius
,
T.
, and
Brennen
,
C. E.
,
2009
, “
Improvement of Acoustic Theory of Ultrasonic Waves in Dilute Bubbly Liquids
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
EL69
EL74
.10.1121/1.3182858
16.
Wu
,
X.
, and
Chahine
,
G. L.
,
2010
, “
Development of an Acoustic Instrument for Bubble Size Distribution Measurement
,”
J. Hydrodyn.
,
22
(
S1
), pp.
325
331
.10.1016/S1001-6058(09)60214-6
17.
Zabreyko
,
P. P.
,
Koshelev
,
A. I.
,
Krasnosel'skii
,
M. A.
,
Mikhlin
,
S. G.
,
Rakovshik
,
L. S.
, and
Stet'senko
,
V. Y.
,
1975
,
Integral Equations – A Reference Text
,
Noordhoff International Publishing
,
Leyden
.
18.
Amromin
,
E. L.
,
2020
, “
Estimation of Ventilation Impact on Fluid-Structure Interaction for Partially Cavitating Hydrofoils
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111203
.10.1115/1.4047797
19.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
20.
Kovinskaya
,
S. I.
,
2007
, “
Linear Waves in Bubbly Liquid and Equilibrium Bubble Size Distribution
,”
19th International Congress on Acoustics
,
Madrid, Spain
, Sept. 2–7.  
21.
Blake
,
W.
,
1986
,
Mechanism of Flow-Induced Sound and Vibration
,
Academic Press
,
New York
.
22.
Arndt
,
R. E. A.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Ann. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.10.1146/annurev.fl.13.010181.001421
You do not currently have access to this content.