Abstract

An experimental investigation was carried out to study the effects of single and multiple vortex generators (VGs) on the mean velocity, turbulence levels, and surface temperature distributions in a square channel. The flow and heat transfer in the wake of VGs were characterized using particle image velocimetry (PIV) and infrared (IR) thermography. Measurements were performed in the wake regions of VGs, where the counter-rotating vortex pairs (CVPs) were dominant. Inclination angle and taper angle of VGs, spacing-to-width ratio (STW), and streamwise spacing between rows of VGs (S) were varied to understand the effects on flow and heat transfer characteristics. Results reveal a distinct impact of the VGs and layouts on the vortical flow and local convective heat transfer phenomena. The measurements clearly show that configuration parameters such as inclination angle, spacing-to-width ratio, streamwise spacing, and arrangement of multiple VGs are factors in the optimum heat transfer performance applicable to a wide range of thermal management systems.

References

1.
Hewitt
,
G. F.
,
Shires
,
G. L.
, and
Bott
,
T. R.
,
1994
,
Process Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
2.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: Review of Recent Progress
,”
Exp Therm Fluid Sci
,
11
(
3
), pp.
295
309
.10.1016/0894-1777(95)00066-U
3.
Yanagihara
,
J. I.
, and
Torii
,
K.
,
1993
, “
Heat Transfer Augmentation by Longitudinal Vortices Rows
,”
Exp. Therm Fluid Sci
,
1993
, pp.
560
567
.10.1016/B978-0-444-81619-1.50065-4
4.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
,
1993
, “
Wing-Type Vortex Generators for Fin-And-Tube Heat Exchangers
,”
Exp Therm Fluid Sci
,
7
(
4
), pp.
287
295
.10.1016/0894-1777(93)90052-K
5.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.10.1016/0894-1777(91)90024-L
6.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem Eng. Res. Des.
,
76
(
2
), pp.
108
123
.10.1205/026387698524686
7.
Torii
,
K.
, and
Yanagihara
,
J. I.
,
1989
, “
The Effects of Longitudinal Vortices on Heat Transfer of Laminar Boundary Layers
,”
JSME Int. J II-Fluid
,
32
(
3
), pp.
395
402
.10.1299/jsmeb1988.32.3_395
8.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
4
), pp.
880
885
.10.1115/1.2911462
9.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Tsai
,
T. W.
,
2000
, “
Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
2
), pp.
327
335
.10.1115/1.521487
10.
Pearcey
,
H. H.
,
1961
,
Boundary Layer and Flow Control Vol. 2: Shock Induced Separation and Its Prevention by Design and Boundary-Layer Control
,
Pergamon Press
,
New York
, pp.
1166
1344
.
11.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1988
, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
26
(
7
), pp.
816
823
.10.2514/3.9974
12.
Westphal
,
R. V.
,
Eaton
,
J. K.
, and
Pauley
,
W. R.
,
1987
, “
Interaction Between a Vortex and a Turbulent Boundary Layer in a Streamwise Pressure Gradient
,”
Turbulent Shear Flows 5
,
Springer
,
Berlin, Heidelberg
.
13.
Habchi
,
C.
,
Lemenand
,
T.
,
Valle
,
D. D.
, and
Peerhossaini
,
H.
,
2010
, “
Turbulence Behavior of Artificially Generated Vorticity
,”
J. Turbul.
,
11
, p.
N36
.10.1080/14685248.2010.510841
14.
Park
,
J.
,
Pagan-Vazquez
,
A.
,
Alvarado
,
J. L.
,
Chamorro
,
L. P.
,
Lux
,
S. M.
, and
Marsh
,
C. P.
,
2017
, “
Characterization of Tab-Induced Counter-Rotating Vortex Pair for Mixing Applications
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031102
.10.1115/1.4034864
15.
Park
,
J.
,
Pagan-Vazquez
,
A.
,
Alvarado
,
J. L.
,
Chamorro
,
L. P.
,
Lux
,
S.
, and
Marsh
,
C.
,
2016
, “
Experimental and Numerical Visualization of Counter Rotating Vortices
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
8
), p.
080908
.10.1115/1.4033825
16.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.10.1016/S0017-9310(02)00080-7
17.
Elavarasan
,
R.
, and
Meng
,
H.
,
2000
, “
Flow Visualization Study of Role of Coherent Structures in a Tab Wake
,”
Fluid Dyn. Res.
,
27
(
3
), pp.
183
197
.10.1016/S0169-5983(00)00003-4
18.
Yang
,
W.
,
Meng
,
H.
, and
Sheng
,
J.
,
2001
, “
Dynamics of Hairpin Vortices Generated by a Mixing Tab in a Channel Flow
,”
Exp. Fluids
,
30
(
6
), pp.
705
722
.10.1007/s003480000252
19.
Dong
,
S.
, and
Meng
,
H. U. I.
,
2004
, “
Flow Past a Trapezoidal Tab
,”
J. Fluid Mech.
,
510
, pp.
219
242
.10.1017/S0022112004009486
20.
Gretta
,
W. J.
, and
Smith
,
C. R.
,
1993
, “
The Flow Structure and Statistics of a Passive Mixing Tab
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
255
255
.10.1115/1.2910133
21.
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2010
, “
On the Correlation Between Vorticity Strength and Convective Heat Transfer
,”
ASME
Paper No. IHTC14-22269.10.1115/IHTC14-22269
22.
Hamed
,
A. M.
,
Pagan-Vazquez
,
A.
,
Khovalyg
,
D.
,
Zhang
,
Z.
, and
Chamorro
,
L. P.
,
2017
, “
Vortical Structures in the Near Wake of Tabs With Various Geometries
,”
J. Fluid Mech.
,
825
, pp.
167
188
.10.1017/jfm.2017.384
23.
Kaci
,
H. M.
,
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2010
, “
Flow Structure and Heat Transfer Induced by Embedded Vorticity
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3575
3584
.10.1016/j.ijheatmasstransfer.2010.04.029
24.
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
,
Harion
,
J. L.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2012
, “
Enhancing Heat Transfer in Vortex Generator-Type Multifunctional Heat Exchangers
,”
Appl. Therm. Eng.
,
38
, pp.
14
25
.10.1016/j.applthermaleng.2012.01.020
25.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
(
1
), p. e30.https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bl/
26.
Sanchez
,
T.
,
Chen
,
D. T.
,
DeCamp
,
S. J.
,
Heymann
,
M.
, and
Dogic
,
Z.
,
2012
, “
Spontaneous Motion in Hierarchically Assembled Active Matter
,”
Nature
,
491
(
7424
), pp.
431
434
.10.1038/nature11591
27.
Mirsepassi
,
A.
, and
Rankin
,
D. D.
,
2014
, “
Particle Image Velocimetry in Viscoelastic Fluids and Particle Interaction Effects
,”
Exp. Fluids
,
55
(
1
), p.
1641
.10.1007/s00348-013-1641-0
28.
Piro
,
V.
,
Piro
,
N.
, and
Piro
,
O.
,
2012
, “
Characterization of Intraventricular Blood Flow Using a Microbubble-Contrast Tracking Echo-PIV Technique
,”
J. Am. Coll. Cardiol.
,
59
(
13
), p.
E1139
.10.1016/S0735-1097(12)61140-1
29.
McVay
,
K. L.
,
Park
,
J. H.
,
Lee
,
S.
,
Hassan
,
Y. A.
, and
Anand
,
N. K.
,
2015
, “
Preliminary Tests of Particle Image Velocimetry for the Upper Plenum of a Scaled Model of a Very High Temperature Gas Cooled Reactor
,”
Prog. Nucl. Energy
,
83
, pp.
305
317
.10.1016/j.pnucene.2015.04.004
30.
Ghorbani-Tari
,
Z.
,
Sunden
,
B.
, and
Tanda
,
G.
,
2011
, “
On Liquid Crystal Thermography for Determination of Heat Transfer Coefficient in Rectangular Ducts
,”
Proceeding of 15th International Conference on Computational Methods and Experimental Measures,
Vol.
51
, New Forest, UK, May 31–June 2, pp.
255
266
.
31.
Li
,
S.
,
Ghorbani-Tari
,
Z.
,
Xie
,
G.
, and
Sundén
,
B.
,
2013
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Ribbed Channels With Large Rib Pitch-to-Height Ratios
,”
J. Enhanc. Heat Transfer
,
20
(
4
), pp. 305–319.10.1615/JEnhHeatTransf.2014010155
32.
Jeschke
,
P.
,
Biertümpfel
,
R.
, and
Beer
,
H.
,
2000
, “
Liquid-Crystal Thermography for Heat-Transfer Measurements in the Presence of Longitudinal Vortices in a Natural Convection Flow
,”
Meas. Sci. Technol.
,
11
(
5
), pp.
447
453
.10.1088/0957-0233/11/5/301
33.
Kakaç
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
, p.
7
.
34.
Lin
,
W. L.
, and
Lin
,
T. F.
,
1996
, “
Experimental Study of Unstable Mixed Convection of Air in a Bottom Heated Horizontal Rectangular Duct
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1649
1663
.10.1016/0017-9310(95)00256-1
35.
Park
,
J.
,
2018
, “
Characterization of Fluids and Thermal Performance of Tab-Induced Counter-Rotating Vortex Pairs on Surface Cooling
,” Ph.D dissertation,
Texas A&M University
,
College Station, TX
.
36.
Gavrilakis
,
S.
,
1992
, “
Numerical Simulation of Low-Reynolds-Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
,
244
(
-1
), pp.
101
129
.10.1017/S0022112092002982
37.
Niederschulte
,
M. A.
,
Adrian
,
R. J.
, and
Hanratty
,
T. J.
,
1990
, “
Measurements of Turbulent Flow in a Channel at Low Reynolds Numbers
,”
Exp. Fluids
,
9
(
4
), pp.
222
230
.10.1007/BF00190423
38.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
39.
Gnielinski
,
V.
,
1983
, “
Forced Convection in Ducts
,”
Heat Exchanger Design Handbook
, Vol.
2
, Hemisphere Publishing Corp., Washington, DC, pp.
1
2
.
40.
Sparrow
,
E. M.
,
Lloyd
,
J. R.
, and
Hixon
,
C. W.
,
1966
, “
Experiments on Turbulent Heat Transfer in an Asymmetrically Heated Rectangular Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
88
(
2
), pp.
170
174
.10.1115/1.3691505
41.
Tan
,
H. M.
, and
Charters
,
W. W. S.
,
1970
, “
An Experimental Investigation of Forced-Convective Heat Transfer for Fully-Developed Turbulent Flow in a Rectangular Duct With Asymmetric Heating
,”
Sol. Energy
,
13
(
1
), pp.
121
125
.10.1016/0038-092X(70)90012-5
42.
Barrow
,
H.
,
1962
, “
An Analytical and Experimental Study of Turbulent Gas Flow Between Two Smooth Parallel Walls With Unequal Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
5
(
6
), pp.
469
487
.10.1016/0017-9310(62)90158-8
43.
Ichimiya
,
K.
,
1987
, “
Effects of Several Roughness Elements on an Insulated Wall for Heat Transfer From the Opposite Smooth Heated Surface in a Parallel Plate Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
68
73
.10.1115/1.3248071
44.
Kurosaki
,
Y.
, and
Satoh
,
I.
,
1987
, “
Laminar Heat Transfer in an Asymmetrically Heated Rectangular Duct
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1201
1208
.10.1016/0017-9310(87)90049-4
45.
Yanagihara
,
J. I.
, and
Torii
,
K.
,
1992
, “
Enhancement of Laminar Boundary Layer Heat Transfer by a Vortex Generator
,”
JSME Int. J. II-Fluid
,
35
(
3
), pp.
400
405
.10.1299/jsmeb1988.35.3_400
46.
Eibeck
,
P. A.
, and
Eaton
,
J. K.
,
1987
, “
Heat Transfer Effects of a Longitudinal Vortex Embedded in a Turbulent Boundary Layer
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
16
24
.10.1115/1.3248039
47.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.10.1146/annurev.fl.23.010191.003125
48.
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
,
Al Shaer
,
A.
, and
Peerhossaini
,
H.
,
2015
, “
Experimental Study of the Turbulent Field Behind a Perforated Vortex Generator
,”
J. Appl. Mech. Tech.
,
56
(
4
), pp.
569
579
.10.1134/S0021894415040045
You do not currently have access to this content.