Abstract

Cyclone separators are an integral part of many industrial processes. A good understanding of the flow features is paramount to efficiently use them. The turbulent fluid flow characteristics are modeled using unsteady Reynolds-averaged Navier–Stokes (URANS), large eddy simulations (LES), and hybrid LES/Reynolds–averaged Navier–Stokes (RANS) turbulent models. The hybrid LES/RANS approaches, namely, detached eddy simulation (DES), delayed detached eddy simulation (DDES), and improved delayed detached eddy simulation (IDDES) based on the kω SST RANS approaches are explored. The study is carried out for three different inlet velocities (v = 8, 16.1, and 32 m/s). The results from hybrid LES/RANS models are shown to be in good agreement with the experimental data available in the literature. Reduction in computational time and mesh size are the two main benefits of using hybrid LES/RANS models over the traditional LES methods. The Reynolds stresses are observed in order to understand the redistribution of turbulent energy in the flow field. The velocity profiles and vorticity quantities are explored to obtain a better understanding of the behavior of fluid flow in cyclone separators.

References

1.
Ni
,
L.
,
Tian
,
J.
,
Song
,
T.
,
Jong
,
Y.
, and
Zhao
,
J.
,
2019
, “
Optimizing Geometric Parameters in Hydrocyclones for Enhanced Separations: A Review and Perspective
,”
Sep. Purif. Rev.
,
48
(
1
), pp.
30
51
.10.1080/15422119.2017.1421558
2.
Dabir
,
B.
, and
Petty
,
C.
,
1984
, “
Laser Doppler Anemometry Measurements of Tangential and Axial Velocities in a Hydrocyclone Operating Without an Air Core
,”
Second International Conference on Hydrocyclone
, BHRA, England, Sept. 19-21, pp.
15
26
.
3.
Quian
,
L.
,
Changlie
,
D.
,
Jirun
,
X.
,
Lixin
,
Y.
, and
Guangai
,
X.
,
1989
, “
Comparison of the Performance of Water-Sealed and Commercial Hydrocyclones
,”
Int. J. Miner. Process.
,
25
(
3–4
), pp.
297
310
.10.1016/0301-7516(89)90024-0
4.
Dai
,
G.
,
Chen
,
W.
,
Li
,
J.
, and
Chu
,
L.
,
1999
, “
Experimental Study of Solid–Liquid Two-Phase Flow in a Hydrocyclone
,”
Chem. Eng. J.
,
74
(
3
), pp.
211
216
.10.1016/S1385-8947(99)00043-1
5.
Wang
,
J.
,
Bai
,
Z.
,
Yang
,
Q.
,
Fan
,
Y.
, and
Wang
,
H.
,
2016
, “
Investigation of the Simultaneous Volumetric 3-Component Flow Field Inside a Hydrocyclone
,”
Sep. Purif. Technol.
,
163
, pp.
120
127
.10.1016/j.seppur.2016.02.022
6.
Liu
,
Z.
,
Zheng
,
Y.
,
Jia
,
L.
,
Jiao
,
J.
, and
Zhang
,
Q.
,
2006
, “
Stereoscopic PIV Studies on the Swirling Flow Structure in a Gas Cyclone
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4252
4261
.10.1016/j.ces.2006.01.024
7.
Vengadesan
,
S.
, and
Nithiarasu
,
P.
,
2007
, “
Hybrid LES—Review and Assessment
,”
Sadhana
,
32
(
5
), pp.
501
511
.10.1007/s12046-007-0037-3
8.
Vakamalla
,
T. R.
, and
Mangadoddy
,
N.
,
2017
, “
Numerical Simulation of Industrial Hydrocyclones Performance: Role of Turbulence Modelling
,”
Sep. Purif. Technol.
,
176
, pp.
23
39
.10.1016/j.seppur.2016.11.049
9.
Gao
,
Z.
,
Wang
,
J.
,
Wang
,
J.
,
Mao
,
Y.
, and
Wei
,
Y.
,
2019
, “
Analysis of the Effect of Vortex on the Flow Field of a Cylindrical Cyclone Separator
,”
Sep. Purif. Technol.
,
211
, pp.
438
447
.10.1016/j.seppur.2018.08.024
10.
Saidi
,
M.
,
Maddahian
,
R.
,
Farhanieh
,
B.
, and
Afshin
,
H.
,
2012
, “
Modeling of Flow Field and Separation Efficiency of a Deoiling Hydrocyclone Using Large Eddy Simulation
,”
Int. J. Miner. Process.
,
112–113
, pp.
84
93
.10.1016/j.minpro.2012.06.002
11.
Wang
,
S.
,
Li
,
H.
,
Wang
,
R.
,
Wang
,
X.
,
Tian
,
R.
, and
Sun
,
Q.
,
2019
, “
Effect of the Inlet Angle on the Performance of a Cyclone Separator Using CFD-DEM
,”
Adv. Powder Technol.
,
30
(
2
), pp.
227
239
.10.1016/j.apt.2018.10.027
12.
Wang
,
Y.
,
Zhang
,
F.
,
Yuan
,
S.
,
Chen
,
K.
,
Wei
,
X.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p. 061503.10.1115/1.4045995
13.
Sajjadi
,
H.
,
Salmanzadeh
,
M.
,
Ahmadi
,
G.
, and
Jafari
,
S.
,
2018
, “
Hybrid Les/Rans Model for Simulation of Particle Dispersion and Deposition
,”
ASME
Paper No. FEDSM2018-83383.10.1115/FEDSM2018-83383
14.
Safavi
,
M.
, and
Amani
,
E.
,
2018
, “
A Comparative Study of Turbulence Models for Non-Premixed Swirl-Stabilized Flames
,”
J. Turbul.
,
19
(
11–12
), pp.
1017
1050
.10.1080/14685248.2018.1527033
15.
Li
,
H.
,
Huang
,
Q.
,
Pan
,
G.
, and
Dong
,
X.
,
2020
, “
The Transient Prediction of a Pre-Swirl Stator Pump-Jet Propulsor and a Comparative Study of Hybrid Rans/Les Simulations on the Wake Vortices
,”
Ocean Eng.
,
203
, p.
107224
.10.1016/j.oceaneng.2020.107224
16.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
17.
Menter, F. R., Kuntz, M., and Langtry, R., 2003, “Ten Years of Industrial Experience With the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, 4(1), pp. 625–632.
18.
Mishra
,
A. A.
,
Mukhopadhaya
,
J.
,
Iaccarino
,
G.
, and
Alonso
,
J.
,
2019
, “
Uncertainty Estimation Module for Turbulence Model Predictions in SU2
,”
AIAA J.
,
57
(
3
), pp.
1066
1077
.10.2514/1.J057187
19.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
20.
Shalaby
,
H.
,
Pachler
,
K.
,
Wozniak
,
K.
, and
Wozniak
,
G.
,
2005
, “
Comparative Study of the Continuous Phase Flow in a Cyclone Separator Using Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
48
(
11
), pp.
1175
1197
.10.1002/fld.942
21.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2017
, “
Toward Approximating Non-Local Dynamics in Single-Point Pressure–Strain Correlation Closures
,”
J. Fluid Mech.
,
811
, pp.
168
188
.10.1017/jfm.2016.730
22.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-Point Physics and Amenability to One-Point Closures
,”
J. Fluid Mech.
,
731
, pp.
639
681
.10.1017/jfm.2013.343
23.
Kitoh
,
O.
,
1991
, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.10.1017/S0022112091002124
24.
Mishra
,
A. A.
, and
Girimaji
,
S.
,
2019
, “
Linear Analysis of Non-Local Physics in Homogeneous Turbulent Flows
,”
Phys. Fluids
,
31
(
3
), p.
035102
.10.1063/1.5085239
25.
Leschziner
,
M.
, and
Hogg
,
S.
,
1989
, “
Computation of Highly Swirling Confined Flow With a Reynolds Stress Turbulence Model
,”
AIAA J.
,
27
(
1
), pp.
57
63
.10.2514/3.10094
26.
Poncet
,
S.
,
Viazzo
,
S.
, and
Oguic
,
R.
,
2014
, “
Large Eddy Simulations of Taylor-Couette-Poiseuille Flows in a Narrow-Gap System
,”
Phys. Fluids
,
26
(
10
), pp.
105108
108
.10.1063/1.4899196
27.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
28.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–11, p.
879
.10.2514/6.2001-879
29.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
30.
Chaouat
,
B.
,
2017
, “
The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows
,”
Flow, Turbul. Combust.
,
99
(
2
), pp.
279
327
.10.1007/s10494-017-9828-8
31.
Hoekstra
,
A. J.
,
2000
, “
Gas Flow Field and Collection Efficiency of Cyclone Separators
,” Ph.D. thesis.
32.
Oh
,
J.
,
Choi
,
S.
, and
Kim
,
J.
,
2015
, “
Numerical Simulation of an Internal Flow Field in a Uniflow Cyclone Separator
,”
Powder Technol.
,
274
, pp.
135
145
.10.1016/j.powtec.2015.01.015
33.
Oropeza-Vazquez
,
C.
,
2001
, “
Multiphase Flow Separation in Liquid-Liquid Cylindrical Cyclone and Gas-Liquid-Liquid Cylindrical Cyclone Compact Separators
,” Ph.D. thesis,
Citeseer
, The University of Tulsa, Tulsa, OK.
34.
Hoekstra
,
A.
,
Derksen
,
J.
, and
Van Den Akker
,
H.
,
1999
, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2055
2065
.10.1016/S0009-2509(98)00373-X
35.
Hoekstra
,
A.
,
Van Vliet
,
E.
,
Derksen
,
J.
, and
Van den Akker
,
H.
,
1998
, “
Vortex Core Precession in a Gas Cyclone
,”
Advances in Turbulence VII
,
Springer
, Berlin, pp.
289
292
.
You do not currently have access to this content.