Abstract

The steam trap valve is used in thermal power systems to pour out condensate water and keep steam inside. While flowing through steam trap valves, the condensate water can easily reach cavitation, which may cause serious damage to the piping system. In this paper, in order to control cavitation inside steam trap valves, effects of sleeve parameters, including orifice diameter, installation angle and thickness, are investigated using a cavitation model. The pressure, velocity, and vapor distribution inside valves are analyzed and compared for different sleeve geometrical parameters. The total vapor volumes are also predicted and compared. The results show that the sleeve parameters have a significant influence on the cavitation intensity and cavitation vapor distributions. Specifically, the orifice diameter of the sleeve has much larger effect on each aspect than that of other two geometrical parameters of the sleeve. The improved geometrical parameters of the sleeve are determined to suppress the cavitation inside the valve. The sleeve with smaller diameter orifices, higher installation angle (maximum 80 deg), and higher thickness is recommended in practice for better anticavitation performance. The work is of significance for cavitation control and the optimization design of steam trap valves.

References

1.
Rahmeyer
,
W. J.
,
1982
, “
Cavitation Noise From Butterfly Valves
,”
Nucl. Eng. Des.
,
72
(
3
), pp.
297
301
.10.1016/0029-5493(82)90043-7
2.
Ueno
,
H.
,
Okajima
,
A.
,
Tanaka
,
H.
, and
Hasegawa
,
T.
,
1994
, “
Noise Measurement and Numerical Simulation of Oil Flow in Pressure Control Valves
,”
JSME Int. J., Ser. B
,
37
(
2
), pp.
336
341
.10.1299/jsmeb.37.336
3.
Hassis
,
H.
,
1999
, “
Noise Caused by Cavitating Butterfly and Monovar Valves
,”
J. Sound Vib.
,
225
(
3
), pp.
515
526
.10.1006/jsvi.1999.2254
4.
Qian
,
J. Y.
,
Chen
,
M. R.
,
Liu
,
X. L.
, and
Jin
,
Z. J.
,
2019
, “
A Numerical Investigation of the Flow of Nanofluids Through a Micro Tesla Valve
,”
J. Zhejiang Univ., Sci., A
,
20
(
1
), pp.
50
60
.10.1631/jzus.A1800431
5.
Zhang
,
J.-h.
,
Wang
,
D.
,
Xu
,
B.
,
Gan
,
M.-y.
,
Pan
,
M.
, and
Yang
,
H.-y.
,
2018
, “
Experimental and Numerical Investigation of Flow Forces in a Seat Valve Using a Damping Sleeve With Orifices
,”
J. Zhejiang Univ., Sci., A
,
19
(
6
), pp.
417
430
.10.1631/jzus.A1700164
6.
Hu
,
J. K.
,
Tong
,
Z. M.
,
Xin
,
J. G.
, and
Yang
,
C. J.
,
2019
, “
Simulation and Experiment of a Remotely Operated Underwater Vehicle With Cavitation Jet Technology
,”
J. Zhejiang Univ., Sci., A
,
20
(
10
), pp.
804
810
.10.1631/jzus.A1900356
7.
An
,
Y. J.
,
Kim
,
B. J.
, and
Shin
,
B. R.
,
2008
, “
Numerical Analysis of 3-D Flow Through LNG Marine Control Valves for Their Advanced Design
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1998
2005
.10.1007/s12206-008-0745-6
8.
Chern
,
M. J.
,
Hsu
,
P. H.
,
Cheng
,
Y. J.
,
Tseng
,
P. Y.
, and
Hu
,
C. M.
,
2013
, “
Numerical Study on Cavitation Occurrence in Globe Valve
,”
J. Energy Eng.
,
139
(
1
), pp.
25
34
.10.1061/(ASCE)EY.1943-7897.0000084
9.
Wang
,
C.
,
Li
,
G. X.
,
Sun
,
Z. Y.
,
Wang
,
L.
,
Sun
,
S. P.
,
Gu
,
J. J.
, and
Wu
,
X. J.
,
2016
, “
Effects of Structure Parameters on Flow and Cavitation Characteristics Within Control Valve of Fuel Injector for Modern Diesel Engine
,”
Energy Convers. Manage.
,
124
, pp.
104
115
.10.1016/j.enconman.2016.07.004
10.
Yaghoubi
,
H.
,
Madani
,
S. A. H.
, and
Alizadeh
,
M.
,
2018
, “
Numerical Study on Cavitation in a Globe Control Valve With Different Numbers of Anti-Cavitation Trims
,”
J. Cent. South Univ.
,
25
(
11
), pp.
2677
2687
.10.1007/s11771-018-3945-y
11.
Jin
,
Z. J.
,
Qiu
,
C.
,
Jiang
,
C. H.
,
Wu
,
J. Y.
, and
Qian
,
J. Y.
,
2020
, “
Effect of Valve Core Shapes on Cavitation Flow Through a Sleeve Regulating Valve
,”
J. Zhejiang Univ., Sci., A
,
21
(
1
), pp.
1
14
.10.1631/jzus.A1900528
12.
Qiu
,
C.
,
Jiang
,
C. H.
,
Zhang
,
H.
,
Wu
,
J. Y.
, and
Jin
,
Z. J.
,
2019
, “
Pressure Drop and Cavitation Analysis on Sleeve Regulating Valve
,”
Processes
,
7
(
11
), p.
829
.10.3390/pr7110829
13.
Qu
,
W. S.
,
Tan
,
L.
,
Cao
,
S. L.
,
Xu
,
Y.
,
Huang
,
J.
, and
Xu
,
Q. H.
,
2015
, “
Experiment and Numerical Simulation of Cavitation Performance on a Pressure-Regulating Valve With Different Openings
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
72
(
4
), p.
042035
.10.1088/1757-899X/72/4/042035
14.
Ou
,
G. F.
,
Xu
,
J.
,
Li
,
W. Z.
, and
Chen
,
B.
,
2015
, “
Investigation on Cavitation Flow in Pressure Relief Valve With High Pressure Differentials for Coal Liquefaction
,”
Procedia Eng.
,
130
, pp.
125
134
.10.1016/j.proeng.2015.12.182
15.
Liang
,
J.
,
Luo
,
X. H.
,
Liu
,
Y. S.
,
Li
,
X. W.
, and
Shi
,
T. L.
,
2016
, “
A Numerical Investigation in Effects of Inlet Pressure Fluctuations on the Flow and Cavitation Characteristics Inside Water Hydraulic Poppet Valves
,”
Int. J. Heat Mass Transfer
,
103
, pp.
684
700
.10.1016/j.ijheatmasstransfer.2016.07.112
16.
Yuan
,
C.
,
Song
,
J. C.
,
Zhu
,
L. S.
, and
Liu
,
M. H.
,
2019
, “
Numerical Investigation on Cavitating Jet Inside a Poppet Valve With Special Emphasis on Cavitation-Vortex Interaction
,”
Int. J. Heat Mass Transfer
,
141
, pp.
1009
1024
.10.1016/j.ijheatmasstransfer.2019.06.105
17.
Li
,
S. J.
,
Aung
,
N. Z.
,
Zhang
,
S. Z.
,
Cao
,
J. Z.
, and
Xue
,
X. Z.
,
2013
, “
Experimental and Numerical Investigation of Cavitation Phenomenon in Flapper–Nozzle Pilot Stage of an Electrohydraulic Servo-Valve
,”
Comput. Fluids
,
88
, pp.
590
598
.10.1016/j.compfluid.2013.10.016
18.
Aung
,
N. Z.
, and
Li
,
S. J.
,
2014
, “
A Numerical Study of Cavitation Phenomenon in a Flapper-Nozzle Pilot Stage of an Electrohydraulic Servo-Valve With an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
77
, pp.
31
39
.10.1016/j.enconman.2013.09.009
19.
Okita
,
K.
,
Miyamoto
,
Y.
,
Kataoka
,
T.
,
Takagi
,
S.
, and
Kato
,
H.
,
2015
, “
Mechanism of Noise Generation by Cavitation in Hydraulic Relief Valve
,”
J. Phys.: Conf. Ser.
,
656
, p.
012104
.10.1088/1742-6596/656/1/012104
20.
He
,
J.
,
Li
,
B. B.
, and
Liu
,
X. M.
,
2019
, “
Investigation of Flow Characteristics in the U-Shaped Throttle Valve
,”
Adv. Mech. Eng.
,
11
(
3
), pp.
1
10
.10.1177/1687814019830492
21.
Semrau
,
S.
,
Skoda
,
R.
,
Wustmann
,
W.
, and
Habr
,
K.
,
2019
, “
Experimental and Numerical Investigation of Noise Generation Due to Acoustic Resonance in a Cavitating Valve
,”
J. Sound Vib.
,
463
, p.
114956
.10.1016/j.jsv.2019.114956
22.
Liu
,
X. M.
,
Wu
,
Z. H.
,
Li
,
B. B.
,
Zhao
,
J. Y.
,
He
,
J.
,
Li
,
W.
,
Zhang
,
C.
, and
Xie
,
F. W.
,
2020
, “
Influence of Inlet Pressure on Cavitation Characteristics in Regulating Valve
,”
Eng. Appl. Comp. Fluid.
,
14
(
1
), pp.
299
310
.10.1080/19942060.2020.1711811
23.
Yi
,
D. Y.
,
Lu
,
L.
,
Zou
,
J.
, and
Fu
,
X.
,
2015
, “
Interactions Between Poppet Vibration and Cavitation in Relief Valve
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
8
), pp.
1447
1461
.10.1177/0954406214544304
24.
Kumagai
,
K.
,
Ryu
,
S.
,
Ota
,
M.
, and
Maeno
,
K.
,
2016
, “
Investigation of Poppet Valve Vibration With Cavitation
,”
Int. J. Fluid Power
,
17
(
1
), pp.
15
24
.10.1080/14399776.2015.1115648
25.
Li
,
B. B.
,
Li
,
R. R.
,
Yan
,
J. W.
,
Liu
,
X. M.
, and
Wang
,
B. Y.
,
2019
, “
Vibration Characteristics of the Two-Stage Throttle Valve Induced by Cavitation
,”
J. Eng.
,
2019
(
13
), pp.
102
106
.10.1049/joe.2018.8963
26.
Min
,
W.
,
Wang
,
H. Y.
,
Zheng
,
Z.
,
Wang
,
D.
,
Ji
,
H.
, and
Wang
,
Y. B.
,
2020
, “
Visual Experimental Investigation on the Stability of Pressure Regulating Poppet Valve
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
12
), pp. 2329–2348.10.1177/0954406220905872
27.
Lu
,
L.
,
Xie
,
S. H.
,
Yin
,
Y. B.
, and
Ryu
,
S. H.
,
2020
, “
Experimental and Numerical Analysis on the Surge Instability Characteristics of the Vortex Flow Produced Large Vapor Cavity in U-Shape Notch Spool Valve
,”
Int. J. Heat Mass Transfer
,
146
, p.
118882
.10.1016/j.ijheatmasstransfer.2019.118882
28.
Zou
,
J.
,
Fu
,
X.
,
Du
,
X. W.
,
Ruan
,
X. D.
,
Ji
,
H.
,
Ryu
,
S.
, and
Ochiai
,
M.
,
2008
, “
Cavitation in a Non-Circular Opening Spool Valve With U-Grooves
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
4
), pp.
413
420
.10.1243/09576509JPE489
29.
Shi
,
W. J.
,
Cao
,
S. P.
,
Luo
,
X. H.
,
Zhang
,
Z. T.
, and
Zhu
,
Y. Q.
,
2017
, “
Experimental Research on the Cavitation Suppression in the Water Hydraulic Throttle Valve
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051302
.10.1115/1.4037443
30.
Xu
,
H.
,
Wang
,
H. H.
,
Hu
,
M. Y.
,
Jiao
,
L. Y.
, and
Li
,
C.
,
2018
, “
Optimal Design and Experimental Research of the Anti-Cavitation Structure in the Water Hydraulic Relief Valve
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
051601
.10.1115/1.4040893
31.
Yang
,
H.
,
Wang
,
W.
,
Lu
,
K.
, and
Chen
,
Z.
,
2019
, “
Cavitation Reduction of a Flapper-Nozzle Pilot Valve Using Continuous Microjets
,”
Int. J. Heat Mass Transfer
,
133
, pp.
1099
1109
.10.1016/j.ijheatmasstransfer.2019.01.008
32.
Zhang
,
J.
,
Duan
,
B. S.
,
Jiang
,
J. H.
, and
Zhi
,
H.
,
2019
, “
Study on the Effect of the Pressure Characteristics of the Cone Throttle on the Cavitation
,”
J. Eng.
,
2019
(
13
), pp.
319
322
.10.1049/joe.2018.9012
33.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
ICMF International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1, pp. 1–12.
34.
Qiu
,
C.
,
Zhang
,
H.
,
Yang
,
C.
,
Hou
,
C. W.
,
Jin
,
Z. J.
, and
Qian
,
J. Y.
,
2019
, “
An Optimization Study on Cavitation Flow in a Steam Trap Valve
,”
ASME
Paper No. AJKFluids2019-4993.10.1115/AJKFluids2019-4993
35.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
36.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng
,,
130
(
7
), p.
078001
.10.1115/1.2960953
37.
Colombo
,
E.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2012
, “
A Methodology for Qualifying Industrial CFD: The Q3 Approach and the Role of a Protocol
,”
Comput. Fluids
,
54
, pp.
56
66
.10.1016/j.compfluid.2011.10.003
You do not currently have access to this content.